• 제목/요약/키워드: Fuel combustion

Search Result 3,219, Processing Time 0.03 seconds

A Study on the Analysis of Polycyclic Aromatic Hydrocarbons in Air (대기중 다환 방향족 탄화수소류의 분석에 관한 연구)

  • Pyo, Hee-Soo;Hong, Jee-Eon;Lee, Kang-Jin;Park, Song-Ja;Lee, Won
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-465
    • /
    • 2000
  • Polycyclic aromatic hydrocarbons (PAHs) were produced by thermoreaction (incompletely combustion) of organic compounds such as fuel, gasoline, diesel etc, and were known the strong carcinogenic compounds. In our country, a study for health risk assessment of PAHs in air were needed according to rapidly increasing of motor vehicle and progressing to industrial country. In this study, concentrations of PAHs in 263 air samples of fourteen sites-Seoul, Pusan, etc-according to four times sampling for one year are measured by GC/MSD for basic research for health risk assessment. As the result, 14 PAHs are detected in all samples and annual average concentration of total PAHs was $28.72ng/m^3$ and highest average concentration of total PARs was $47.76ng/m^3$ in winter season. The concentrations of total PAHs are proportioned to amount of extracted organic material (EOM). The average concentration of total PAHs in EOM was 0.28%.

  • PDF

Development of an Optimization Technique of CETOP-D Inlet Flow Factor for Reactor Core Thermal Margin Improvement (원자로심의 열적여유도 증대를 위한CETOP-D의 입구유량인자 최적화 기법 개발)

  • Hong, Sung-Deok;Lim, Jong-Seon;Yoo, Yeon-Jong;Kwon, Jung-Tack;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.562-570
    • /
    • 1995
  • The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized oater reactor-s have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(mini-mum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC mod-el using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by elim-inating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the YongGwang Units 3&4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method.

  • PDF

The study on bioaccumulation of heavy metals in the cultured Pacific oyster, Crassostrea gigas, along the coast of Tongyeong, Korea (통영연안 해역의 양식 참굴 (Crassostrea gigas) 의 중금속 농축에 관한 연구)

  • Cho, Sang-Man;Kim, Yeong-Hwan;Jeong, Woo-Geon
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.213-222
    • /
    • 2009
  • In order to investigate contamination of heavy metal in seawater and cultured oyster, samples were collected November 2003 to July 2004 from 12 sites (13 sites for seawater) along the coast of Tongyeong, Korea. The mean concentrations of metal in oyster tissues were as follows: 0.09 (0.01-0.3) ${\mu}g/l$ for Cd, 0.47 (0.01-1.4) ${\mu}g/l$ for Cr, 0.59 (0.2-2.3) ${\mu}g/l$ for Ni, 1.02 (0.1-4.2) ${\mu}g/l$ for Pb and 0.48 (0.01-3.9) ${\mu}g/l$ for Hg in the seawater, whereas 2.45 (0-5.47) mg/kgDW for Cd, 3.63 (0.10-12.91) mg/kgDW for Cr, 3.2 (0.01-15.73) mg/kgDW for Ni, 3.51 (0.01-6.47) mg/kgDW for Pb and 0.39 (0.004-0.74) mg/kgDW for Hg, respectively. Most metal concentration values were below the permissible range for the related regulations. Mean bioconcentration factors (BCF) for each metal were as follows: 38,964 (1,771-207, 171) for Cd, 9,583 (1,231-80, 162) for Cr, 191 (3-20, 980) for Ni, 1,416 (245-5, 207) for Pb and 180 (5-716) for Hg, respectively. The BCF values from this study corresponded to the transitional phase from the pristine to the contaminated waters. Notably, Cd showed the highest BCF, which suggest that the Pacific oyster could be utilized as a useful biomarker for Cd contamination in sea water. The multidimensional scaling analysis suggested that the metal contaminants are mainly originated from combustion of fossil fuel and accumulated to oyster through food web.

  • PDF

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

A Study on the Effect of De-NOx Device on GHG Emissions (De-NOx 저감장치가 온실가스 배출량에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Oh, Sang-Ki
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.212-220
    • /
    • 2018
  • As increase the number of vehicles, the issue of greenhouse gas that was emitted by them became important. As a result, greenhouse gas (GHG) regulations are being strengthened and efforts are being actively made to reduce greenhouse gas emissions in the automotive industry. In the other hand, regulations for harmful emission of vehicles have been reinforced by step. Especially, the lastly applied step, so called Euro 6, not only decreased NOx limit down to half of Euro 5 but also introduced real driving emission limit for NOx and PN. It is a challenge for manufacturers to meet the recent GHG regulation as well as the latest emission regulation. To overcome these regulations a De-NOx after-treatment system is being applied to diesel vehicles that are known emitting the lowest GHG among conventional internal combustion engines. At the time of the introduction of Euro 6 emission standard in Korea, in the domestic fuel economy certification test, some diesel vehicles emitted more $CH_4$ than Euro 5 vehicles. As a result, it was confirmed that LNT-equipped vehicles emitted a high level $CH_4$ and the level exceeded the US emission standard. In order to determine the reason, various prior literature was investigated. However, it was difficult to find a detailed study on the methane increase with LNT. In this paper, to determine whether the characteristics of vehicles equipped with LNT the affects the above issue and other greenhouse gases, 6 passenger cars were tested on several emission test modes and ambient temperatures with a environment chamber chassis dynamometer. 2 cars of these were equipped with LNT only, other 2 cars had SCR only, and LNT + SCR were applied to remaining 2 cars. The test result shown that the vehicles equipped with LNT emitted more $CH_4$ than the vehicles with SCR only. Also, $CH_4$ tended to increase as the higher acceleration of the test mode. However, as the test temperature decreases, $CH_4$ tended to decreased. $CO_2$ was not affected by kinds of De-NOx device but characteristic of the test modes.

Recycling of useful Materials from Fly Ash of Coal-fired Power Plant (석탄화력발전소에서 발생되는 비회로부터 유용성분의 회수)

  • Kim, Dul-Sun;Han, Gwang Su;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.179-188
    • /
    • 2019
  • Upon the combustion of coal particles in a coal-fired power plant, fly ash (80%) and bottom ash (20%) are unavoidably produced. Most of the ashes are, however, just dumped onto a landfill site. When the landfill site that takes the fly ash and bottom ash is saturated, further operation of the coal-fired power plant might be discontinued unless a new alternative landfill site is prepared. In this study, wet flotation separation system (floating process) was employed in order to recover unburned carbon (UC), ceramic microsphere (CM) and cleaned ash (CA), all of which serving as useful components within fly ash. The average recovered fractions of UC, CM, and CA from fly ash were 92.10, 75.75, and 69.71, respectively, while the recovered fractions of UC were higher than those of CM and CA by 16% and 22%, respectively. The combustible component (CC) within the recovered UC possessed a weight percentage as high as 52.54wt%, whereas the burning heat of UC was estimated to be $4,232kcal\;kg^{-1}$. As more carbon-containing UC is recovered from fly ash, UC is expected to be used successfully as an industrial fuel. Owing to the effects of pH, more efficient chemical separations of CM and CA, rather than UC, were obtained. The average $SiO_2$ contents within the separated CM and CA had a value of 53.55wt% and 78.66wt%, respectively, which is indicative of their plausible future application as industrial materials in many fields.

A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate (공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at $153^{\circ}C$, when the critical ignition temperature was $152.5^{\circ}C$. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was $149.5^{\circ}C$, and at the flow rate of 1.5 NL/min, it was $147.5^{\circ}C$. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

Experiment on the Correlation between Mass Flux of Heptane and Material Property of Wall in Compartment Fire (구획 화재 시 벽면 재료 특성과 헵탄의 질량유속 상관관계 실험)

  • Park, Jung Wook;Shin, Yeon Je;Kim, Jeong Yong;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, the relationships between the material properties of the wall and the fuel mass flux in compartment fire. The fire resistant board (fire-board) and steel plate compartments are constructed with a 0.3 m width, 0.5 m height and 3.0 m length. To obtain the mass loss rate considering the location of the fire origin in compartment, experiments of a heptane pool fire are performed with a combustion area of $0.01m^2$ and $0.0225m^2$. The results show that the initial mass flux of heptane, $0.0087kg/m^2{\cdot}s$, is increased to $0.166kg/m^2{\cdot}s$ for fire board and $0.019kg/m^2{\cdot}s$ for steel plate. It means that the fire-scenario should be considered with the thermal characteristics of the material properties and geometric shapes of the compartment to predict fire propagation accurately in a compartment space.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Experimental Assessment of the Methanol Addition Effect on the Tribological Characteristics of Ni-based Alloy (메탄올 첨가에 따른 Ni 기반 합금의 트라이볼로지 특성 변화에 대한 실험적 연구)

  • Junemin Choi;Sangmoon Park;Youngjun Kim;Sunghoon Kim;Hyemin Kim;Jeongeon Park;JeongWon Yu;Myeonggyu Lee;Hyeonwoo Lee;Koo-Hyun Chung
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Currently, the demand for green technologies toward a sustainable future is rapidly increasing due to growing concern over environmental issues. Methanol is biodegradable and can provide clean combustion to reduce sulfur oxide and nitrogen oxide emissions, and therefore it is a candidate fuel for marine engines. However, the effect of methanol on tribological characteristic degradation should be addressed for methanol-fueled engines. In this study, the methanol addition effects on tribological characteristic degradation is experimentally assessed using a pin-on-disk tribo-tester. Ni-based alloy is used as a target material due to its broad applicability as an engine component material. For a lubricant, engine oil with and without methanol are used. The tests are conducted for up to 10,000 cycles under boundary lubrication while the change in friction force is monitored. Additionally, the wear rate is determined based on laser scanning confocal microscope data. An additional test in which methanol is added at regular intervals is performed with an aim to directly observe its effect on friction. Overall, the friction coefficient increases slightly with increasing methanol concentration. Furthermore, the wear rate of the pin and disk increase significantly with methanol addition. The results also indicate that the friction increases instantaneously with methanol addition at the contacting interface. These findings may be useful for better understanding the methanol effect on the tribological characteristics of Ni-based alloys for methanol-fueled engines with improved performance.