• Title/Summary/Keyword: Fuel cell vehicle

Search Result 416, Processing Time 0.025 seconds

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Simulation and Experimental Investigation of Reverse Drawing Process for Manufacture of High-Capacity Aluminum Liner (대용량 알루미늄 라이너의 성형을 위한 역 드로잉 공정 해석 및 실험)

  • Lee, Seungyun;Cho, Sungmin;Lee, Sunkyu;Lyu, Geunjun;Kim, Soyoung;Kang, Sunghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this work, finite element investigations were carried out to optimize reverse drawing process design for manufacture of high-capacity aluminum liner used in fuel cell vehicle. The tensile tests with aluminum alloy Al6061 annealed at $350^{\circ}C$ were carried out to obtain the flow stresses. In order to estimate more accurate flow stresses after necking, the flow stresses were estimated from the comparison of load vs. displacement curves which were obtained from experimental and simulation results of tensile tests. In case of finite element analyses of reverse drawing processes, it was focused on the effects of process designs such as punch and die designs, blank holding force, drawing ratio and the clearance between the punch and blank holder on the generation of wrinkle and fracture of the blank and partially heated punch. However, it was revealed that experimental results still show the fracture at the end of 2nd drawn cup, although partially heated punch is used. Nevertheless, the drawn cup can be used because the sufficient length of the drawn cup for the next flow forming process and spinning process was obtained.

Present Status of Hydrogen Refueling Station in KIER (KIER 수소충전소 구축 현황)

  • Seo, Dong-Joo;Seo, Yu-Taek;Seo, Yong-Seog;Park, Sang-Ho;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.21-24
    • /
    • 2006
  • 수소의 소규모 분산 생산 기술은 본격 적 인 수소 인프라가 도입되기 전에 연료전지 자동차의 수소 충전용이나 분산 발전형 연료전지의 수소 공급을 위해 필요하다. 생산 용량은 수소 기준으로 $20{\sim}100 Nm^3/hr$ 정도로 현재로선 천연가스의 수증기 개 질법이 가장 경제적인 공정으로 알려져 있다. 소규모 생산에 따른 열효율 저하를 줄이 기 위해 단위 공정들이 통합된 컴팩트 개질 시스템의 개발이 필요하다. 연료전지 자동차용 수소 인프라 조기 구축을 위하여 수소충전소 구축과 국산화 천연가스 수증기 개질기 개발을 병행하여 진행하였다. 수소 충전소 구축 부분은 충전소 부지 확보, 건물 건축, 각종 유틸리 티 설치의 토목 부분과 천연가스 개질형 수소 제조 유닛 설치, 수소 압축, 저장, 디스펜싱 시스템 설치를 포함하고 있으며 고압 설비에 대한 인허가 대응 및 안전대책 작업도 진행하였다. 구축된 수소충전소는 향후 연료전지 자동차 연계 실증 프로그램에 활용할 수 있다. 국산화 핵심 기술 개발을 위하여 열 및 시스템 통합 설계에 의 해 천연가스 수증기 개질기를 제작하고 내부 열교환 구조에 따른 개질기의 성능을 평가하였다. 개발된 개질기는 개질온도 $720^{\circ}C$, 수증기 대 카본 비 2.7의 운전조건에서 $23Nm^3/h$ 이상의 수소 생산이 가능하였으며 73% 이상의 개질 효율을 나타내었다. 개발된 천연가스 수증기 개질기는 향후 수소 정제용 PSA(Pressure Swing Adsorption) 시스템과 연계하여 수소충전소 국산화 엔지니어링 설계 패키지 개발의 핵심 기 술로 사용할 계획이다.시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다 한다. 단위 전지 운전 온도 $130^{\circ}C$, 상대습도 37%의 운전 조건에서도 상당히 우수한 전지 성능을 보임에 따라 고온/저가습 조건에서 상용 Nafion 112 막보다 우수한 막 특성을 나타냄을 확인하였다.소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{

  • PDF

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.