• 제목/요약/키워드: Fuel cell system

검색결과 1,369건 처리시간 0.025초

공기 불요 연료전지 동력 시스템 (Air-independent Fuel Cell Power System)

  • 김태규
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.331-334
    • /
    • 2009
  • 본 연구에서는 우주 및 수중 동력원을 위한 연료전지 기반 공기 불요 추진 시스템을 개발하였다. 공기 불요 동력 시스템을 위해 과산화수소를 산화제로 선택하였고, 촉매 분해 반응을 통해 산소와 물을 발생하였다. 순수한 산소는 연료전지에 공급되고, 물은 분리한 후 저장된다. 본 연구에서는 고체 상태의 수소화붕소나트륨을 수소원으로 사용하였고, 촉매 가수분해 반응을 통해 순수한 수소를 발생할 수 있었다. 연료전지 기반 공기 불요 동력 시스템을 검증하기 위해 연료전지 시스템을 구축하였고 다양한 조건에서 평가를 수행하였다.

  • PDF

연료전지 자동차용 TMS 히터 개발 (Development of Thermal Management System Heater for Fuel Cell Vehicles)

  • 한수동;김성균;김치명;박용선;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

연료전지 수치해석을 이용한 등가회로 모델링 연구 (A Study on the Fuel Cell Equivalent Circuit Modeling)

  • 오환영;최윤영;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.

수소 연료전지차로의 전환을 위한 녹색 전략 (Green pathway to hydrogen fuel cell vehicle)

  • 이문수;이민진;이영희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

대형 Community 건물의 연료전지 구동 지열원 히트펌프 냉.난방 시스템 성능에 관한 해석적 연구 (Analytical Study on the Performance of Fuel Cell Driven Ground Source Heat Pump Heating and Cooling System of a Large Community Building)

  • 변재기;정동화;최영돈;조성환
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.355-366
    • /
    • 2009
  • In the present study, fuel cell driven ground source heat pump system is applied to a large community building and performance of the heat pump system is computationally analyzed. Conduction heat transfer between brine pipe and ground is analyzed by TEACH code to predict the performance of heat pump system. Predicted COP of the heat pump system and the energy cost were compared with variation of the location of the objective building the water saturation rate of soil and the driven powers of heat pump system. Significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system in comparison with the late-night electricity driven system. It is due to the low electricity production cost of fuel cell system and the application of recovered waste heat generated during electricity production process to the heating of large community building.

Modeling and an Efficient Com bined Control Strategy for Fuel Cell Electric Vehicles

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Choi, Joo-Yeop;Choy, Ick;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1629-1633
    • /
    • 2004
  • In this paper, we first implement the simulation environment to investigate the efficient control method of a Fuel Cell Electric Vehicle (FCEV) system with battery. The subsystems of a FCEV including the fuel cell system, the electric motor (including the power electronics) and the tansmission (reduction gear), and the auxiliary power source (battery) are mathematically fomulated and coded using the Matlab/Simulink software. Some examples are given to show the capabilities of the modeled system and d a basic control strategy is examined for the economic energy distribution between the fuel cell and the auxiliary power source. It is illustrated by simulations that the actual vehicle velocity follows the given desired velocity pattern while both SOC control and power distribution control are being performed.

  • PDF

A Sliding Mode Observer Design for Fuel Cell Electric Vehicles

  • Park In-Duck;Kim Si-Kyung
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents the sliding mode observer of an induction motor for the fuel cell electric vehicles. The exact rotor flux estimation of the induction motor is important for achieving the best performance from the fuel cell electric vehicle system. However, the flux estimator of the induction motor control is highly sensitive to the voltage sensor output characteristics and system parameter variation influenced by external factors. In order to eliminate these problems, this paper investigates the electric vehicle performance due to parameter variation of the induction motor. A new method to estimate the fuel cell electric vehicle system is proposed based on the sliding mode observer.

태양광.연료전지 복합발전 시스템의 DC/DC 컨버터 제어 시뮬레이션 (DC/DC Converter Control for Photovoltaic/Fuel Cell Hybrid Generation system)

  • 박소리;박상훈;원충연;정용채;김영렬
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2008
  • This paper is proposed that the photovoltaic/fuel cell hybrid generation system for the stand-alone system. In case of the photovoltaic generation system, it depends on the weather condition, irradiation and so on... On the contrary, fuel cell has not this limitation. It can be interactive generation system between photovoltaic and fuel cell. This paper simulated stand-alone co-generation system based on the control of DC link. Moreover, 1[kw] BLDC motor system with speed and hysteresis current controller is used for the proposed system.

  • PDF

국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 (Review of Research Trend in Fuel Cell: Analysis on Fuel-Cell-Related Technologies in Electrode, Electrolyte, Separator Plate, Stack, System, Balance of Plant, and Diagnosis Areas)

  • 이영덕;김재엽;유동진;주현철;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.530-545
    • /
    • 2020
  • This paper reviews and summarizes the fuel-cell-related studies those have been recently published in major Korean Citation Index journals, aiming at analyzing the research trend in fuel cell technologies. Six major journals are selected for the literature survey; 57 papers are chosen for the detailed analysis through a screening examination on the total 1,040 papers published during between 2018 and 2020. Papers are classified into six technical categories, such as i) electrode, ii) electrolyte, iii) bipolar plate and stack, iv) fuel cell system, v) balance of plant, and vi) diagnosis-related studies, and summarized by the experts in the relevant area. Through this paper, we provide a comprehensive review on the recent trends and progress in fuel-cell-related research work in Korea.

수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가 (Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems)

  • 김다은;염지웅;최성준;김영규;조성민
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.