• Title/Summary/Keyword: Fuel blends

Search Result 98, Processing Time 0.024 seconds

The Study on Effect of Emissions and Performance of a Conventional Vehicle using the High Concentration Alcohol Blended Petroleum Product (고농도 알코올 혼합 석유제품이 자동차 성능 및 배출가스에 미치는 영향 연구)

  • KIM, SUNG-WOO;DOE, JIN-WOO;KIM, KI-HO;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • As concern about energy security and global warming many countries have been making effort to reduce fossil fuel. In the case of US, as one of the efforts, the standards of the alcohol vehicle fuels(including blended with gasoline) have been established. Alcohol is known that make some trouble concerning startability, durability and corrosion when using as fuel of a conventional vehicle. For these reason, alcohol usage needs not only the fuel standard, but also a modified car. In the case of Korea, although there are no the standard and the modified vehicle yet, high concentration alcohol blended fuel has being sold at illegal market. In this study, exhaust gas and performance of the conventional vehicle that alcohol(methanol and isopropyl alcohol) blends were fueled were measured to notify danger of using them without preparation of institutional arrangements. Also, to analyze correlation characteristics of the fuels and them, property test of the fuels was conducted. The test result show that bad-startability caused by low RVP and high T10 affected increase in NMOG and CO. NOx was increased under the highest short term fuel trim caused by high Oxygen content and low NHV of alcohol. According to increasing as alcohol content, fuel economy and acceleration ability were decreased but $CO_2$ was not significantly decreased.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

The Combustion Characteristics of Biodiesel/Diesel Fuel Blends (바이오디젤/디젤 혼합 연료유의 연소 특성)

  • Song, Young-Ho;Ha, Dong-Myeong;Chung, Kook-Sam
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.35-40
    • /
    • 2008
  • As the environmental pollution by the drastic increase of vehicles becomes one of the social major concerns, the method of reducing the harmful exhaust emission is being the subject of interest. Utilization of used frying oil as a raw material for biodiesel production is helpful not only for the stable supply of raw materials but also costing down the biodiesel price. This study was conducted the measurement the combustion and thermal characteristics with mixing ratio of biodiesel/diesel fuel. In this study, flash points and fire points were measured by using Tag Closed cup apparatus and Cleveland open cup apparatus. As the result, flash points, fire points and AIT increased with percentage of more contained biodiesel.

  • PDF

Performance of a Spark Ignition Engine Fueled with Methanol (메탄올 使용時 의 電氣점火機關 의 性能 에 關한 硏究)

  • 유병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.121-132
    • /
    • 1982
  • Engine torque, specific fuel consumption and MBT spark advance of a domestic automotive engine fueled with methanal-gasoline blends or straight methanal were studied under steady state condition and compared to those obtained with gasoline. The effects of adding methanal to gasoline on engine performance were studied with or without any carburetor modification. At first, the engine was operated without any modification. Next, the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally, the diameters of metering orifices in carburetor were modified to give the same excess air factor for 15% mixture of methanal in gasoline by volume as for gasoline with standard metering orifices in carburetor. The effects of adding methanal to gasoline on engine torque, specific energy consumption and MBT spark advance can be explained on the basis of change in stoichiometry caused by the addition of methanal to gasoline.

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine (디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구)

  • Kim, Hoseung;Jang, Youngun;Lee, Seokhwan;Kim, Taeyoung;Kang, Kernyong;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

The effects of Gasoline-Biodiesel Blended Fuels on Spray Characteristics (스프레이 특성에 가솔린 - 바이오 디젤 혼합 연료의 효과)

  • THONGCHAI, SAKDA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • The current study has investigated the effects of biodiesel blended with gasoline on the spray characteristics in a Constant Volume Combustion Chamber (CVCC). With the concentration of 5, 10, 15 and 20% by volume, biodiesel was blended with commercial gasoline and performed on the macroscopic visualization test. Pure gasoline and biodiesel were also tested as the reference. The shadowgraph technique was conducted in the constant volume chamber. The spray images were recorded by a high speed video camera with frame speed 10,000 frame per second. Fuel injection was set at 800, 1000 and 1,350 bar with the simulated speed 1,500 and 2,000 rpm. The back pressure was controlled at 20 bar. The spray angle and penetration tip were measured and analyzed by using the image processing. At the high injection pressure, the spray penetration length with the simulated speed 1,500 rpm showed that B100 was lower than GB00-20 whereas the spray penetration length with the simulated speed 2,000 rpm exhibited that GB blends and B100 were insignificantly different. Due to biodiesel concentration, its effects on spray angles were observed throughout injection periods (T1, T2 and T3). At the simulated speed 1,500 rpm, the spray angle of GB blends and B100 presented the same pattern following injection timing. In addition, when the simulated speed increased to 2,000 rpm the different spray angle of all blends disappeared at main injection (T3).

State of the Art in the Development of Nitrous Oxide Fuel Blend as Green propellant (친환경 추진제로서의 아산화질소 연료 혼합물 개발동향)

  • Kwon, Minchan;Yang, Juneseo;Lim, Seongtaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1061-1067
    • /
    • 2017
  • Since the 1960s hydrazine is used as a propellant to power rocket, satellites or deep space missions. Due to hydrazine's high toxicity and operating cost, the request for Green Propellant as energetic ionic liquids(HAN, ADN), nitrous oxide blends is growing. Nitrous Oxide Fuel Blend(NOFB) having advantage of a bipropellant performance as well as the advantage of a mono-propellant in respect to the simple propellant tank and feed system. It is worth replacing traditional hydrazine based propellant system if handled and designed properly.

  • PDF

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF