• Title/Summary/Keyword: Fuel behavior

Search Result 1,159, Processing Time 0.038 seconds

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Study of Corrosion behavior of the Separator for MCFC

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.283-285
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of stainless steels has been done 62 mole% $Li_2CO_3$ and 38 mole% $K_2CO_3$ melt at 923 K by using steady-state polarization method and electrochemical impedance spectroscopy method. It was found that SUS 310L and Al coating specimen may be the best choice among the alloys tested in this study for molten carbonate fuel cell component material.

A Study on the Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Atomic Layer-Deposited Thin-Film Electrolyte (수소연료를 이용하는 원자층증착 박막전해질 세라믹연료전지의 초기성능 저하에 관한 연구)

  • JI, SANGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~17% for 40 minutes, which rapidly decreased in the early stage of the performance evaluation but gradually decreased. The open circuit voltage ratio decreased with respect time; however, its time behavior was remarkably different with the reduction behavior of the peak power density ratio. The activation resistance ratio increased as ~15% for 40 minutes, which was almost similar with the time behavior of the peak power density ratio.

Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Plasma-Enhanced Atomic Layer-Deposited Ultra-Thin Electrolyte (플라즈마 원자층증착 초박막전해질 수소 세라믹연료전지의 초기성능 저하)

  • JI, SANGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.340-346
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte fabricated by plasma-enhanced atomic layer deposition method was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~52% for 30 min, which continually decreased as time increased but degradation rate gradually decreased. The open circuit voltage ratio decreased with respect time; however, its behavior was evidently different from the reduction behavior of the peak power density. The activation resistance ratio increased as ~127% for 30 min, which was almost similar with the reduction behavior of the peak power density ratio.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine (MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel (경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구)

  • Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF