• Title/Summary/Keyword: Fuel assembly cladding

Search Result 39, Processing Time 0.02 seconds

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

Thermal Analysis on the Spent Fuel Shipping Cask for a PWR Fuel Assembly (PWR 사용후 핵연료 수송용기에 대한 열해석)

  • Hee Yung Kang;Eun Ho Kwack;Byung Jin Son
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.248-255
    • /
    • 1983
  • The thermal analysis on the spent fuel shipping cask for a PWR fuel assembly is performed. Under the normal and fire-accident conditions the temperature distribution through a multilayer cask calculated in compliance with 10 CFR Part 71. A KNU 5&6 spent fuel assembly is assumed to be the decay heat source, which has the maximum discharge turnup of 45, 000MWD/MTU and has been stored in the spent fuel storage pool for 300 days. As a result of thermal analysis, the maximum cladding temperature in case of dry cavity under fire-accident conditions is calculated to be 455$^{\circ}C$. This value is much less than the limiting value specified in 10 CFR Part 50.46. It indicates that no fuel rod cladding rupture could occur under fire-accident conditions. It was also found that no melting of lead would take place in the major shield region.

  • PDF

Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds (부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성)

  • Kim, Jin-Seon;Park, Se-Min;Kim, Yong-Hwan;Lee, Seung-Jae;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.130-133
    • /
    • 2007
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds (부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성)

  • Lee, Young-Ze;Kim, Jin-Seon;Park, Se-Min;Kim, Yong-Hwan;Lee, Seung-Jae
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.129-132
    • /
    • 2008
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

CFD analysis of the flow blockage in a rectangular fuel assembly of the IAEA 10 MW MTR research reactor

  • Xia, Shuang;Zhou, Xuhua;Hu, Gaojie;Cao, Xiaxin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2847-2858
    • /
    • 2021
  • When a nuclear reactor with rectangular fuel assemblies runs for a long time, impurities and debris may be taken into coolant channels, which may cause flow blockage, and the blocked fuel assemblies might be destroyed. Therefore, the purpose of this study is to perform a thermal-hydraulic analysis of a rectangular fuel assembly by STAR-CCM+, under the condition of one subchannel with 80% blockage ratio. A rectangular fuel assembly of the International Atomic Energy Agency (IAEA) 10 MW material test reactor (MTR) is chosen. In view of the gasket material taken into the coolant channel is close to the single side of the coolant channel, in the flow blockage accident of the Oak Ridge Research Reactor (ORRR), a new blockage category called single side blockage is attempted. The blockage positions include inlet, middle and outlet, and the blockage is set as a cuboid. It is found by simulations that the blockage redistributes the mass flow rate, and large vortices appear locally. The peak temperature of the cladding is maximum, when the blockage is located at the single side of the coolant channel inlet, and no boiling occurs in all blockage cases. Moreover, as the height of the blockage increases, the damage caused by the blockage increases slightly.

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by NDT Method

  • Park, Kwang-June;Park, Yoon-Kyu;Kim, Eun-Ka
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.680-686
    • /
    • 1995
  • It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors ill the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses.

  • PDF

Innovative technologies for spent fuel safe management at Ignalina channel-type reactors

  • Babilas, Egidijus;Dokucajev, Pavel;Janulevicius, Darius;Markelov, Aleksej;Pabarcius, Raimondas;Rimkevicius, Sigitas;Uspuras, Eugenijus;Vaisnoras, Mindaugas
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.504-511
    • /
    • 2018
  • In Lithuania, all spent nuclear fuel (SNF) resulted from the operation of the Ignalina Nuclear Power Plant (INPP), which had two Russian Acronym for "Channelized Large Power Reactor"-type reactors. After the final shutdown, the total amount of SNF at the INPP was approximately 22,000 fuel assemblies. All these assemblies will be stored for about 50 years and disposed of after that. The decision to shut down and decommission both reactors in Lithuania before termination of design period raises a significant challenge for the treatment of accumulated SNF. Therefore, various techniques and technologies for SNF management were developed and justified for that specific case, and a set of special equipment was installed at the INPP, the effectiveness of which was demonstrated during its operation. This article presents unique techniques related to the management of SNF adopted and commissioned at the INPP after its operation shutdown, namely fuel rod cladding leak tightness control system and special equipment for collection of possible spillage during handling of SNF assembly in the hot cell. The operational experience and measurement results of fuel rod cladding leak tightness control system are presented.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.