• Title/Summary/Keyword: Fuel assembly

Search Result 665, Processing Time 0.022 seconds

Development of an Optimization Technique of CETOP-D Inlet Flow Factor for Reactor Core Thermal Margin Improvement (원자로심의 열적여유도 증대를 위한CETOP-D의 입구유량인자 최적화 기법 개발)

  • Hong, Sung-Deok;Lim, Jong-Seon;Yoo, Yeon-Jong;Kwon, Jung-Tack;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.562-570
    • /
    • 1995
  • The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized oater reactor-s have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(mini-mum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC mod-el using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by elim-inating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the YongGwang Units 3&4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method.

  • PDF

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Enhancement of Membrane Durability in PEMFC by Fucoidan and Tannic Acid (후코이단과 탄닌산에 의한 PEMFC 고분자막의 내구성 향상)

  • Mihwa Lee;Sohyeong Oh;Cheun-Ho Chu;Young-Sook Kim;Il-Chai Na;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • In order to improve the durability of the PEMFC(Proton Exchange Membrane Fuel Cells) polymer membrane, a radical scavenger and a support are used. In this study, the durability of membranes containing fucoidan extracted from seaweeds and tannic acid serving as a crosslinking agent is evaluated to improve chemical and physical durability. Physical durability is evaluated by measuring tensile strength, and chemical durability is measured by Fenton experiment. Membrane and electrode assembly (MEA) is prepared and mechanical and chemical durability are measured through accelerated durability evaluation in the cell. The tensile strength measurement showed that fucoidan and tannic acid can improve the mechanical durability of the membrane by improving the strain rate and yield strength. It is shown in Fenton experiment that fucoidan acts as a radical scavenger. As a result of the accelerated durability test in the unit cell, fucoidan improved both chemical and mechanical durability, increasing the accelerated durability evaluation time by 38.1% compared to the additive-free membrane. When tannic acid is added, the durability of the polymer membrane is improved by 13.9% by improving the mechanical durability.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

The Role of the Soft Law for Space Debris Mitigation in International Law (국제법상 우주폐기물감축 연성법의 역할에 관한 연구)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.469-497
    • /
    • 2015
  • In 2009 Iridium 33, a satellite owned by the American Iridium Communications Inc. and Kosmos-2251, a satellite owned by the Russian Space Forces, collided at a speed of 42,120 km/h and an altitude of 789 kilometers above the Taymyr Peninsula in Siberia. NASA estimated that the satellite collision had created approximately 1,000 pieces of debris larger than 10 centimeters, in addition to many smaller ones. By July 2011, the U.S. Space Surveillance Network(SSN) had catalogued over 2,000 large debris fragments. On January 11, 2007 China conducted a test on its anti-satellite missile. A Chinese weather satellite, the FY-1C polar orbit satellite, was destroyed by the missile that was launched using a multistage solid-fuel. The test was unprecedented for having created a record amount of debris. At least 2,317 pieces of trackable size (i.e. of golf ball size or larger) and an estimated 150,000 particles were generated as a result. As far as the Space Treaties such as 1967 Outer Space Treaty, 1968 Rescue Agreement, 1972 Liability Convention, 1975 Registration Convention and 1979 Moon Agreement are concerned, few provisions addressing the space environment and debris in space can be found. In the early years of space exploration dating back to the late 1950s, the focus of international law was on the establishment of a basic set of rules on the activities undertaken by various states in outer space.. Consequently environmental issues, including those of space debris, did not receive the priority they deserve when international space law was originally drafted. As shown in the case of the 1978 "Cosmos 954 Incident" between Canada and USSR, the two parties settled it by the memorandum between two nations not by the Space Treaties to which they are parties. In 1994 the 66th conference of International Law Association(ILA) adopted "International Instrument on the Protection of the Environment from Damage Caused by Space Debris". The Inter-Agency Space Debris Coordination Committee(IADC) issued some guidelines for the space debris which were the basis of "the UN Space Debris Mitigation Guidelines" which had been approved by the Committee on the Peaceful Uses of Outer Space(COPUOS) in its 527th meeting. On December 21 2007 this guideline was approved by UNGA Resolution 62/217. The EU has proposed an "International Code of Conduct for Outer Space Activities" as a transparency and confidence-building measure. It was only in 2010 that the Scientific and Technical Subcommittee began considering as an agenda item the long-term sustainability of outer space. A Working Group on the Long-term Sustainability of Outer Space Activities was established, the objectives of which include identifying areas of concern for the long-term sustainability of outer space activities, proposing measures that could enhance sustainability, and producing voluntary guidelines to reduce risks to long-term sustainability. By this effort "Guidelines on the Long-term Sustainability of Outer Space Activities" are being under consideration. In the case of "Declaration of Legal Principles Governing the Activities of States in the Exp1oration and Use of Outer Space" adopted by UNGA Resolution 1962(XVIII), December 13 1963, the 9 principles proclaimed in that Declaration, although all of them incorporated in the Space Treaties, could be regarded as customary international law binding all states considering the time and opinio juris by the responses of the world. Although the soft law such as resolutions, guidelines are not binding law, there are some provisions which have a fundamentally norm-creating character and customary international law. In November 12 1974 UN General Assembly recalled through a Resolution 3232(XXIX) "Review of the role of International Court of Justice" that the development of international law may be reflected, inter alia, by the declarations and resolutions of the General Assembly which may to that extend be taken into consideration by the judgements of the International Court of Justice. We are expecting COPUOS which gave birth 5 Space Treaties that it could give us binding space debris mitigation measures to be implemented based on space debris mitigation soft law in the near future.