• Title/Summary/Keyword: Fuel Volatility

Search Result 32, Processing Time 0.022 seconds

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Preparation and Characterization of Reduced Iron by Using Wastes as Auxiliary Fuels (폐기물을 보조연료로 이용한 환원철 제조 및 환원거동 분석)

  • Je, Hyun-Mo;Kim, Kyoung-Seok;Chu, Yong-Sik;Roh, Dong-Kyu
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • In this study, the wastes were used as fuels for direct reduction iron (DRI) production to reduce production cost and recycle the wastes. We examined the effects of wastes on the reduction behavior of DRI manufacture and the possibility of using wastes as auxiliary fuels. The proximate and Ultimate analysis were carried out to confirm the properties of wastes as fuels, and high-quality reduced irons were fabricated by using the waste as an auxiliary fuel. The metallization of reduced irons increased as the calorific value increase of auxiliary fuel. Especially, the reduced irons fabricated from the waste tires and vinyl plastics which had high heat energy and volatile matters showed higher metallization than the others. The high calorific value and volatility of waste were significant properties as fuel. The high quality DRI could be fabricated with wastes as auxiliary fuels through optimization of reaction conditions.

Review of Real Options Analysis for Renewable Energy Projects (실물옵션 기법을 활용한 신재생에너지사업 경제성분석에 관한 연구)

  • Kim, Kyeongseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Due to climate change, countries around the world are actively investing in renewable energy, reducing fossil fuel use. 23.7% of world electricity is supplied by renewable energy. As the technology continues to develop, it is in a level to compete in terms of power generation cost, and investment conditions are improving. However, investment in renewable energy projects is not easy. This study analyzed trends of domestic and international researches on economics assessment applying real options analysis to investment decisions of hydro, solar, and wind power projects, which account for a large portion of renewable energy. This study provides (1) the difference between the traditional economic method and the real options analysis, (2) the application process, and (3) the uncertainty elements and option type of the renewable energy project presented by many studies. The real options analysis is suitable for the detailed investment strategy by considering the uncertainties of the renewable energy project and applying the option to improve the profit or to avoid the risk.

Recovery of Zirconium and Removal of Uranium from Alloy Waste by Chloride Volatilization Method

  • Sato, Nobuaki;Minami, Ryosuke;Fujino, Takeo;Matsuda, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • The chloride volatilization method for the recovery of zirconium and removal of uranium from zirconium containing metallic wastes formed in spent fuel reprocessing was studied using the simulated alloy waste, i.e. the mixture of Zr foil and UO$_2$/U$_3$O$_{8}$ powder. When the simulated waste was heated to react with chlorine gas at 350- l00$0^{\circ}C$, the zirconium metal changed to volatile ZrCl$_4$showing high volatility ratio (Vzr) of 99%. The amount of volatilized uranium increases at higher temperatures causing lowering of decontamination factor (DF) of uranium. This is thought to be caused by the chlorination of UO$_2$ with ZrCl$_4$vapor. The highest DF value of 12.5 was obtained when the reaction temperature was 35$0^{\circ}C$. Addition of 10 vol.% oxygen gas into chlorine gas was effective for suppressing the volatilization of uranium, while the volatilization ratio of zirconium was decreased to 68% with the addition of 20 vol.% oxygen. In the case of the mixture of Zr foil and U$_3$O$_{8}$, the V value of uranium showed minimum (44%) at 40$0^{\circ}C$ with chlorine gas giving the highest DF value 24.3. When the 10 vol.% oxygen was added to chlorine gas, the V value of zirconium decreased to 82% at $600^{\circ}C$, but almost all the uranium volatilized (Vu=99%), which may be caused by the formation of volatile uranium chlorides under oxidative atmosphere.ere.

  • PDF

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Pillared Bentonite Materials as Potential Solid Acid Catalyst for Diethyl Ether Synthesis: A Brief Review

  • Puji Wahyuningsih;Karna Wijaya;Aulia Sukma Hutama;Aldino Javier Saviola;Indra Purnama;Won-Chun Oh;Muhammad Aziz
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.223-234
    • /
    • 2024
  • This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

POTENTIAL APPLICATIONS FOR NUCLEAR ENERGY BESIDES ELECTRICITY GENERATION: A GLOBAL PERSPECTIVE

  • Gauthier, Jean-Claude;Ballot, Bernard;Lebrun, Jean-Philippe;Lecomte, Michel;Hittner, Dominique;Carre, Frank
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source tree of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80% of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: ${\bullet}$ Timely adapted licensing process and regulations, codes and standards for such application and design ${\bullet}$ An industry oriented R&D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector ${\bullet}$ Identification of an end user(or a consortium of) willing to fund a FOAK

A Study on Design of Optimal Location for Renewable Energy Facility Using GIS (GIS를 사용한 재생에너지설비 최적 위치 설계에 관한 연구)

  • Jung, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Kim, Young-Gon;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.357-368
    • /
    • 2018
  • For well over 100 years, oil has enabled remote communities to generate electricity and enjoy the benefits of a consistent electrical supply. Relying solely on oil for electricity generation has left island and remote communities exposed to several risks and drawbacks. Oil-based electricity generation is often more expensive and subject to price volatility, which can result in the use of risky fuel hedging strategies. The residents of islands and remote communities express concern over the future impacts of climate change or insist on their opinions for the corresponding action with reduction of carbon emissions. These risks and drawbacks can be overcomed with continuing cost reductions in solar, wind, and energy storage technologies by maker. Reducing costs is not always a straightforward process, relying on more diversely and renewably arranged renewable energy sources led to reduced local construction cost in every situation reviewed in this study. In this paper, a convenient and simple design solution which will facilitate the optimum location and transmission route of renewable energy facility using GIS(Geographic Information System) is proposed. The suggested solutions exercised to the case of geomoon island using GIS and identified by local site survey.

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.