• 제목/요약/키워드: Fuel Vessel

검색결과 316건 처리시간 0.022초

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구 (A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images)

  • 윤준규;명광재;차경옥
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

선박 연료유 잔존량 추정모델을 이용한 침몰선박 위해도 평가 (A Study on the Development of Risk Assessment for Sunken Vessels Using Remaining-Fuel Estimations Model)

  • 장우진;이승현;염홍준;이인철
    • 해양환경안전학회지
    • /
    • 제22권1호
    • /
    • pp.90-97
    • /
    • 2016
  • 침몰선박은 침몰 당시뿐만 아니라 오랜 시간이 경과된 후에도 선체 내에 잔존하고 있는 연료유 등 유해물질의 지속적 혹은 일시적 유출로 2차 해양오염사고를 발생시킬 수 있다. 정부에서는 1999년부터 침몰선박에 대한 관리업무를 수행하고, 침몰선박의 잠재적 위해도를 정량적으로 평가할 수 있는 위해도 평가표를 개발하여 운영함으로써 침몰선박에 대한 국가적 관리체계를 구축하고 있다. 그러나 현재의 침몰선박의 위해도 평가는 침몰선박에 잔존하고 있는 연료유 등의 양에 의해 평가점수가 판이하게 달라짐에도 불구하고, 침몰선박 현황보고자료 중 상당수가 연료유 잔존량 항목이 누락되고 있는 실정이다. 이에 본 연구에서는 선박 연료유 잔존량에 대한 추정모델을 개발하여, 현행 침몰선박 위해도 평가에 적용함으로써 보다 정확한 평가를 수행할 수 있는 방안을 마련하였다.

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

선박관리와 감항능력주의의무에 관한 연구 (A Paper on the Relation of Ship Management and Obligation to Exercise Due Diligence in Making the Vessel Seaworthy)

  • 정준식
    • 한국항만경제학회지
    • /
    • 제21권4호
    • /
    • pp.121-139
    • /
    • 2005
  • The case, Papera Traders Co. Ltd. and Others v. Hyundai Merchant Marine Co. Ltd and Another(The Eurasian Dream), was occurred on July, 1998 when the ISM Code became mandatory under SOLAS and from that date it applied to oil tankers, chemical tankers, gas carriers, bulk carriers and cargo high-speed craft of 500 gross tonnage and above. On July 23, 1998, a fire started on the deck of pure car carrier Eurasian Dream while in port at Sharjah. The source of fuel was the stevedores action of pouring petrol or transferring fuel in some way - refueling or pouring into a carburettor. The fire eventually destroyed or damaged the vessels cargo of new and second-hand vehicles and rendered the vessel itself a constructive total loss. Justice Cresswell held that the fire that destroyed or damaged the cargo was due to the unseaworthiness of the vessel they have the burden of proving that the vessel was unseaworthy before and at the beginning of the voyage and that the loss or damage was caused by that unseaworthiness. This case was a dispute between dependent and claimant alleging that the carrier should provide "properly man, equip and supply the ship and keep the ship so manned" under Hague-Visby Rules. Although ISM code was not officially applied to the carriage by car carriers until July 2002, a rule based on the code had customarily been employed as a mean for international dispute resolution. Examining the above case closely, the purpose of this study is to explore the relation of ship management and obligation to exercise due diligence in making the vessel seaworthy.

  • PDF

CNG 저장용기의 두부 성형을 위한 열간스피닝 공정에 관한 연구 (Study of Hot Spinning Process for Head of CNG Storage Vessel)

  • 이현우;정성윤;김철
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.547-554
    • /
    • 2013
  • 천연가스 자동차에 장착되는 연료저장용기는 크게 두부, 실린더부 그리고 바닥부로 나뉜다. 실린더부와 바닥부에 관한 연구는 이미 충분히 수행되었으나, 두부 성형에 관한 연구 및 설계자료는 전무한 실정이며, 현재 현장 작업자들의 경험이나 시행착오에 의해 제작되고 있다. 본 연구에서는 천연가스 저장용기의 두부 성형 공정인 열간스피닝 공정 분석을 위하여 회전체 소성가공에 적합한 ALE method를 적용하여 유한요소해석을 수행하였다. 성형인자들(이송거리, 성형시간, 소재의 온도, 회전속도)이 성형롤러의 하중 및 두부의 좌굴에 미치는 영향을 분석하고, 이를 토대로 저장용기의 두부성형 가능성을 검토하였다. 또한 성형해석 결과로 제조된 저장용기 두부의 안전성을 평가하기 위하여 파열압력에 대한 용기의 구조해석 및 실험을 수행하였다.

"Inclined Keel" 을 이용한 컨테이너선의 추진효율 향상 (Efficient Propulsion of a Container Ship Using the Inclined Keel Concept)

  • 서광철;;김희정;전호환;강대수
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.379-388
    • /
    • 2007
  • Ever increasing fuel prices and environmental concerns are forcing commercial vessel operators and designers to re-assess current vessel designs with an emphasis on their propulsion systems. The most important parameter determining propulsive efficiency is the diameter of propeller. Many investigations have been carried out to adapt a large and slow turning propeller known as one of the most robust and effective way of achieving high efficiency in ship propulsion system. However, for the same vessel a further increase of propeller diameter would require the modification of the aft end while still paying attention to the hull clearance to prevent excessive propeller excited vibrations. In order to take the advantage of this approach small workboats (e.g. tug boats, fishing vessels etc.) operate in service with a significant increase of aft draught and hence resulting "inclined keel" configuration can be observed. Although it is not unusual to see large vessels sometimes to operate with stern trim to improve their operational performance and fuel efficiency, it is rare to see a such vessel purposely built with an inclined keel feature to fit a large diameter propeller for power saving. This paper investigates the application of the inclined keel configuration to a 3600TEU container vessel with the aim of fitting an 11 % larger diameter propeller (and hence resulting 17.5 % lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration.

수소버스용 내압용기 복합재의 열적환경에 따른 기계적 물성 연구 (High Temperature Tensile Stress Behavior of Hydrogen Vessel Composite Materials for Hydrogen Fuel Cell Bus)

  • 양현석;정우철;신광복;공만식
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.425-430
    • /
    • 2022
  • 수소가스용 압력용기의 안전성 평가를 위해 다양한 내구성 시험이 요구된다. 고온 정압 시험은 고압(875 bar) 하에 고온(85℃ 이상)에서 장시간(1,000시간) 유지하여 수소 용기의 내구성을 시험하는 방법이며 승용차용 용기에 한정되어 있다. 하지만 대용량 수소버스용 용기와 관련된 고온 정압 시험의 국제 기준은 논의 초기 단계이며, 시험의 효율성 및 신뢰성 측면에서 가속시험 기준 제시 등의 현실적 보완이 필요하다. 본 연구에서는 수소버스용 내압용기의 고온 정압 시험 기준을 정립하기 위해 열적환경에 노출된 내압용기 복합재의 기계적 물성평가를 진행하였다. 복합재의 인장강도는 수지의 유리전이온도에 가까워질수록 수지의 열화로 인해 강도가 감소한다. 또한 장시간 유지 시 수지의 후경화로 인해 인장강도의 재상승을 확인할 수 있었다. 따라서 대용량 수소버스용 압력용기의 고온 정압 시험은 탄소섬유 복합재의 에폭시 수지 물성을 바탕으로 시험 조건을 설정해야 한다.

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

KSNP+ 원자로덮개 5.5m 수직 낙하 시 원자로내부구조물 건전성 평가 (Evaluation of Reactor Internals Integrity due to 5.5m Concentric Free Fall of KSNP+ Reactor Vessel Closure Head)

  • 남궁인;정승하;이대희;최택상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1358-1363
    • /
    • 2003
  • Due to the application of Integrated Head Assembly (IHA) in KSNP+ reactor design, an investigation of reactor internals integrity is carried out to assure that the adoption of IHA does not affect the safety of reactor operation. One of the postulated accident events is the R.V. closure head fall from 5.5m high directly above the reactor vessel that may occur during the refueling operation. The analysis model consists of lumped mass elements of the entire reactor vessel and internals. Because of extreme load, separate elastic-plastic analyses are done for the members that undergo plastic deformation. The analysis verified that the stresses of the reactor internals and the fuel assemblies are within the bound of allowable stress limits and the integrity of the fuel assemblies is maintained.

  • PDF