• 제목/요약/키워드: Fuel Test Loop(FTL)

검색결과 15건 처리시간 0.023초

고방사성 산화물핵연료의 해외수송방안 분석 (The Option Study of Oversea Shipment of DUPIC Fuel Elements to Canada)

  • 이호희;박장진;양명승;서기석
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.614-620
    • /
    • 2003
  • 원자력연구소에서는 국내 원전에서 배출된 사용후핵연료를 IMEF M6 핫셀에서 건식 재가공하여 건식공정 산화물핵연료를 개발하였다. 개발된 핵연료의 성능을 검증하기 위해서는 실제 상용로와 동일한 고온고압 조건하에서 조사시험이 필요하나 국내에는 이러한 조사시설을 갖추지 못하고 있으므로 핵연료 성능의 검증이 어렵던 차에 한$\cdot$$\cdot$미 IAEA간의 국제공동연구 과제진도회의에서 AECL측은 중성자비를 받지 않고 캐나다 NRU에서 건식공정 산화물핵연료를 조사시험을 할 수 있다고 제안하였다. NRU 조사시험을 하고자 하는 핵연료는 건식공정 산화물핵연료봉 10개(약 6kgU)이며 운반물 분류등급에 따라 제7종 위험물로 핵분열성물질에 해당한다. 일반적으로 소량의 방사성물질을 운반할 경우에는 비용뿐 아니라 수송기간 측면에서 항공수송이 선박수송에 비해 유리한 것으로 알려져 있어 항공기를 이용한 건식공정 산화물핵연료의 해외 수송방안을 검토하였다. 검토결과, 현재 건식공정 산화물핵연료봉 10개를 운반할 수 있는 적절한 항공수송용 수송용기가 없어 항공수송이 불가능한 것으로 조사되었다. 선박을 이용한 해외 수송방안은 가능하나 이 경우에는 전용선박을 사용해야 함으로 비용이 많이 수요되는 것으로 분석되었다.

  • PDF

노내시험부 내부집합체에 대한 유체유발진동특성 (Characteristics of flow-induced vibration for inner assembly of in-pile test section)

  • 이한희;이종민;이정영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.250-253
    • /
    • 2006
  • The in-pile Section (IPS) is subjected to flow-induced vibration(FIV) due to the flow of the primary coolant and then the structural integrity. The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vortical hole call IR1 of HANARO reactor core. In order to verify the velocity and displacement both the inside region of IPS at the annular region of IPS, the vibration was measured by varing the flow rate on both regions. The displacements of fuel assembly in the in-pile Section (IPS) were found to be lower than the values of allowable design criteria.

  • PDF

조사시험용 압력용기의 조립 및 시험 (The Assembly and Test of Pressure Vessel for Irradiation)

  • 박국남;이종민;윤영중;전형길;안성호;이기홍;김영기;케네디
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

CONTRIBUTION OF HANARO IRRADIATION TECHNOLOGIES TO NATIONAL NUCLEAR R&D

  • Choo, Kee Nam;Cho, Man Soon;Yang, Sung Woo;Park, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.501-512
    • /
    • 2014
  • HANARO is a multipurpose research reactor located at the Korea Atomic Energy Research Institute (KAERI). Since the commencement of its operation in 1995, various neutron irradiation facilities, such as rabbit irradiation facilities, fuel test loop (FTL) facilities, capsule irradiation facilities, and neutron transmutation doping (NTD) facilities, have been developed and actively utilized for various nuclear material irradiation tests requested by users from research institutes, universities, and industries. Most irradiation tests have been related to national R&D relevant to present nuclear power reactors such as the ageing management and safety evaluation of the components. Based on the accumulated experience as well as the sophisticated requirements of users, HANARO has recently supported national R&D projects relevant to new nuclear systems including the System-integrated Modular Advanced Reactor (SMART), research reactors, and future nuclear systems. This paper documents the current state and utilization of irradiation facilities in HANARO, and summarizes ongoing research efforts to deploy advanced irradiation technology.