• 제목/요약/키워드: Fuel Supply

검색결과 998건 처리시간 0.031초

고속 비행체 연료공급 및 냉각계통 사례분석 (A Case Study on Fuel Supply and Cooling Systems of High-Speed Vehicles)

  • 최세영;박수용;최현경;전필선;박정배
    • 한국항공운항학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2013
  • In high-speed vehicle, selection of fuel, configuration of components and cooling system are required to solve the heating issue by aerodynamic heating and inner combustion process. This subsystem consists of fuel tank, supply pump, various control valve, heat exchanger, including reactor, connecting line, adiabatic structures and insulations. In this paper, applicable fuel property is considered at flight characteristic of hypersonic vehicles. In this regard, current state of fuel/cooling system technology is identified.

LPLi연료시스템의 LPG연료 반응성 연구 (Reaction Characteristics of LPG fuel in LPLi fuel supply system)

  • 김창업;박철웅;강건용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2904-2909
    • /
    • 2008
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the more promising fuel supply systems for LPG vehicles. To investigate the characteristics of LPG residue in LPLi system, various rubbers were reacted with LPG fuels. The results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And these residues made the core parts of LPLi injector such as a neddle and a nozzle, partially worn, which eventually causes a leakage in LPLi injectors.

  • PDF

고온로를 이용한 매연발생장치 (Soot Generation System Utilizing High-Temperature Furnace)

  • 조상환;박선호;남연우;최유열;이원남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.55-58
    • /
    • 2013
  • A new soot particle generation system has been developed and tested. The soot generation system consists of two sections, a fuel supply and a soot production. In the fuel supply module, either liquid fuel precisely controlled by a syringe pump is mixed with preheated carrier gas and rapidly evaporated or gaseous fuel controlled by a MFC is diluted with dilution gas. The soot production module contains a heater that can raise the gas/fuel temperature up to $1400^{\circ}C$. The physical and chemical properties of produced soot particles depend on the type and concentration of fuel, the residence time, and temperature in the soot production section. The soot generation system will be utilized to produce well-defined soot particles for soot studies such as the evaluation of experimental sampling and analysis processes for the quantitative assessment of PM and BC from ships and the adverse health effects on pulmonary and cardiovascular systems of human body.

  • PDF

대형 CNG 엔진용 인젝터 모듈의 성능 개선을 위한 연구 (Simulation Study for the Performance Improvement of the Injector Module for Heavy-duty CNG Engines)

  • 김용래;박원아;김창기;이장희
    • 한국가스학회지
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2016
  • 버스와 같은 대형 차량에서 사용되는 대형 CNG 엔진에는 가스 연료 분사를 위한 인젝터가 6개 가량의 단위로 모듈 형태를 구성하고 있다. 이러한 인젝터 모듈은 연료 공급을 위한 입출구가 각각 한 곳으로 구성되어 있으며 쓰로틀 후단을 통하여 흡기관으로 연료를 공급하는 방식이므로 과도 운전에 대한 응답성이 매우 낮은 구조를 형성하고 있다. 본 연구에서는 이러한 인젝터 모듈의 내부 유로에 대한 유동 해석을 통하여 응답성을 개선할 수 있는 방안을 제시하고자 한다. 결론에 따르면 내부 유로의 체적을 감소시킴으로써 가스 연료의 공급 응답성을 개선할 수 있었고, 각각의 인젝터에서 모듈의 출구까지의 거리를 동일하게 하는 방안도 응답성과 연료 공급량의 선형성을 확보할 수 있는 것을 확인하였다. 다만 각 인젝터의 분사 순서 시기에는 큰 영향을 받지 않는 결과를 보였다.

고분자 전해질 연료전지 시스템의 효율향상을 위한 공기공급 최적화 (Optimization of Air Supply for Increased Polymer Electrolyte Fuel Cell System Efficiency)

  • 주건엽;조기춘;선우명호;최서호
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.44-51
    • /
    • 2011
  • Polymer Electrolyte Fuel Cells (PEFCs) operate in wide-range changes in temperature, humidity, and electric current for automotive applications. In order to operate automotive PEFC efficiently, optimal air supply is required to adjust to these changes. This paper presents an air-supply optimization process that consists of experiments, modeling of the PEFC system, and optimization. The objective is to establish an air supply suitable for the required power for PEFC system and optimized with a Lagrange multiplier. Our simplified PEFC system model is used as a constraint for optimization problem. The result of this paper presents that efficient operation of PEFC system can be achieved by air-supply optimization.

고분자전해질 연료전지 Dead-end 운전 최적화에 대한 실험적인 연구 (Experimental Analysis for Optimization of PEM Fuel Cell Dead-end Operation)

  • 이봉구;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.136-147
    • /
    • 2015
  • Dead-ended operation of Proton Exchange Membrane Fuel Cell(PEMFC) provides the simplification of fuel cell systems to reduce fuel consumption and weight of fuel cell. However, the water accumulation within the channel prohibits a uniform supply of fuel. Optimization of the purge strategy is required to increase the fuel cell efficiency since fuel and water are removed during the purge process. In this study, we investigated the average voltage output which depends on two interrelated conditions, namely, the supply gas pressure, purging valve open time. In addition, flow visualization was performed to better understand the water build-up on the anode side and cathode side of PEMFC in terms of a variety of the current density. We analyzed the correlation between the purge condition and water flooding.

고분자 전해질 연료 전지용 공기공급계의 동특성 및 성능에 대한 연구 (Study on Dynamic Characteristic & Performance of the Air Supply System for PEM Fuel Cell)

  • 이희섭;김창호;이용복
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.45-53
    • /
    • 2006
  • Turbo-blower as an air supply system is one of the most important BOP (Balance of Plant) systems for FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power, and fuel cell demands a clean air. In this study, turbo-blower supported by air foil bearings is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. Analysis for confirming the stability and endurance is conducted. The rotordynamic stability was predicted using the numerical analysis of air foil bearings and it is verified through experimental works. In spite of various transient dynamic situation, the turbo-blower had stable performances. After the performance test, results are presented. The normal power of driving motor has about 1.6 kW with the 30,000 rpm operating range and the flow rate of air has maximum 160 SCFM. The test results show that the aerodymic performance and stability of turbo-blower are satisfied to the primary goals.

저속항공기 탑재시험을 통한 부력식 연료공급밸브 작동 분석 (Performance Analysis of a Float-Type Fuel Supply Valve through Flight Tests)

  • 정성민;박정배
    • 한국추진공학회지
    • /
    • 제20권1호
    • /
    • pp.76-81
    • /
    • 2016
  • 부력을 이용한 연료공급밸브는 고속 비행체의 가압식 연료탱크 내 연료가 역 중력 상태에서 한 방향으로 이동하는 것을 쫓아 유로를 열어주어 지속적으로 흐르게 한다. 가혹한 시험조건과 고비용 등의 문제로 이 연료공급밸브를 실제 고속으로 시험하는 것은 쉽지 않은 일이다. 따라서 본 연구는 고속 시험 전에 저속항공기에 탑재해 기본적인 회전기동 및 역중력 시험(Negative-g test)을 수행한 내용을 포함하고 있다. 시험 결과를 바탕으로 각 기동에서 밸브의 작동 특성을 파악하고 분석하였다.

다기통 전기점화기관의 균질혼합기 공급에 관한 연구 - 연소특성에 미치는 영향 - (A Study on Homogeneous Mixture Supply in a Multi-Cylinder Spark Ignition Engine - Effect on Combustion Characteristics -)

  • 김물시;이용길;박경석
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2194-2200
    • /
    • 1994
  • In an automotive spark ignition engine, it is important to form the proper mixture (air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel si attached on the inside wall of the intake manifold for unadequate nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in the intake manifold on combustion characteristics and engine performance.

연료전지궤도차량의 동력시스템 (Power System of Fuel Cell Tram)

  • 장세기;목재균;임태훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 2005
  • Power of fuel cell tram is supplied by only fuel cell system or hybrid system of fuel cell and battery/super capacity. Fuel cell is operated by hydrogen, which is fed directly from hydrogen tank or by reforming gasoline or methanol into hydrogen. Power system is preferred with hybrid of fuel cell and battery/super capacity since it improves total energy efficiency through interaction of hybrid components and restores energy regenerated by braking. Also, power supply system by fuel cell hybrid should be designed to output optimum energy efficiency depending on driving mode of fuel cell tram.

  • PDF