• Title/Summary/Keyword: Fuel Separator

Search Result 105, Processing Time 0.031 seconds

Effects of Reynolds Number and Shape of Manifold on Flow Rate in Separator for Polymer Electrolyte Fuel Cell (ICCAS 2004)

  • Huang, Chaii;Ozawa, Yoshikuni;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.68-71
    • /
    • 2004
  • Recently, a great deal of research and development of a fuel cell have been carried out to solve problems on the drain of fossil fuel, air pollution and global warning. In order to improve the efficiency of a fuel cell, it is necessary to clarify the flow in separator. In this study, distributions of velocity flow rate and pressure, and streamlines are examined in detail from numerical analysis with CFD code. In the experiment the distribution of flow rate is measured and flow in the each grooves of the separator is visualized by dye method changing Reynolds number. Furthermore, effects of size of the inlet and outlet manifolds and shape of ribs near the inlet outlet on the distributions of flow and pressure are examined.

  • PDF

Microstructure Analysis of Ni-P-rGO Electroless Composite Plating Layer for PEM Fuel Cell Separator (고분자전해질 연료전지 분리판을 위한 Ni-P-rGO 무전해 복합도금층의 미세조직 분석)

  • Kim, Yeonjae;Kim, Jungsoo;Jang, Jaeho;Park, Won-Wook;Nam, Dae-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.199-204
    • /
    • 2015
  • Recently, fuel cell is a good alternative for energy source. Separator is a important component for fuel cell. In this study, The surface of separator was modified for corrosion resistance and electric conductivity. Reduced graphene oxide (rGO) was made by Staudenmaier's method. Nickel, phosphorus and rGO were coated on 6061 aluminum alloy as a separator of proton exchange membrane fuel cell by composite electroless plating. Scanning electron microscope, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to examine the morphology of Ni-P-rGO. Surface images were shown that the rGO was dispersed on the surface of Ni-P electroless plating, and nickel was combined with the un-reduced oxygen functional group of rGO.

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가)

  • KIM, JI-HONG;KIM, MINJIN;KIM, JINSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.

Effect of the Coaling and Annealing on Noncorrosive of Fuel Cell Separator (코팅과 열처리가 연료전지 분리판의 내식성에 미치는 영향)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.1000-1003
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. One of the material problems is the severe corrosion of the metallic components, such as the separator. The effect of coating and annealing treatment on the corrosion for SUS 304 and SUS 430 which are the candidate materials for molten carbonate fuel cell hardware has been investigated in molten carbonate at $650^{\circ}C$ by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these SUS 304 and SUS 430 decreased with coating and annealing treatment.

An Effect of Laminated Plate on the Performance of Pre-separator for Marine Oily Water Separator (선박 유수분리기 전처리 장치 성능에 미치는 적층판의 영향)

  • 이진열;한원희
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • It's a tendency to strengthen related international laws as the importance on marine oil pollution recently becomes the issue. According to the regulation of IMO, oil discharge from ships is allowed under 15 ppm only and oil filtering equipment is essential. However, for large ships using heavy fuel oil of over S.G 0.98 and viscosity 380 cSt and system oil, it has been in difficulty to process with existing filtering type of oily water separator. Oily water pre-separator of laminated plate type which is one of gravity type separator has very simple structure and it also makes easier to maintain and repair. In another words, it fits well to process large amount of rich oil with high specific gravity. In this paper, oily water pre-separator of laminated plate type has been studied. The function of emulsified oil and 4 different types of oil have been analyzed and each character has been investigated and proved by experiments. As the result of it, the efficiency of separating oil water has been advanced by 10% in case equipped with pre-separator. In addition, the higher temperature is and the more laminated plate has, it turns out to be getting more effect.

Numerical Modeling of Fuel Cell Gasket for Sealing Performance (연료전지 스택의 기밀성 향상을 위한 가스켓 모델링과 해석 기법)

  • Kim, Heon-Young;Kim, Jung-Min;Kim, Dae-Young;Suh, Jung-Do;Yang, Yoo-Chang;Im, Cheol-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.97-100
    • /
    • 2007
  • Fuel Cell Stack performance, which is influenced by the maintenance of a constant internal environment, requires high levels of air tightness. Used for analysis, gasket for fuel cell is made of elastic rubber materials and placed over separator, and shape of deformation of a gasket affects the transformation separator and airtightness while fastening structure. Separator as made of steel sheet isn't broken under pressure but can affect gas and cool water flow by the plastic deformation process. Therefore, it is understood that assembly process is well developed in case distribution of stress and shape of deformation is shown uniformly. This study is conducted on the assumption that a fuel cell maintenance is advantageous in that conditions. In this paper, analyses of unit cell and partial model were performed and distribution of stress and shape of deformation of Gasket and separator were analyzed to evaluate the airtightness while fastening structure.

  • PDF

Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns (딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상)

  • QUACH, THAI-QUYEN;LEE, DONG KEUN;AHN, KOOK YOUNG;KIM, YOUNG SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).

Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators (분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석)

  • YIN, HAOYUAN;KIM, YOUNG JIN;YI, KUNWOO;KIM, HYEON JIN;YUN, KYONG SIK;YU, JI HAENG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.550-556
    • /
    • 2022
  • In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

Assessment of the Stiffness factor of the Separator Plate at the Elevated Temperature (연료전지 분리판의 고온 강성 인자 연구)

  • Kim, J.H.;Woo, D.U.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.296-299
    • /
    • 2007
  • The focus of this study is to estimate the stiffness factor of the separator plate of MCFC (Molten Carbonate Fuel Cell) at the elevated temperature. The process factors affecting the stiffness of the separator plate were chosen to determine the most important factor using the finite element analysis with the Taguchi method. The most influential factor, picked out by the ANOYA, turned out the pitch in the separator plate.

  • PDF

Study of Corrosion and Post Analysis for the Separator Channel of MCFC Stack after Cell Operation for 1200 hours (용융탄산염연료전지(MCFC) 스택의 1200시간 운전 후 분리판 채널부 표면 열화 분석 및 연구)

  • Cho, Kye-Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.3
    • /
    • pp.149-158
    • /
    • 2007
  • Of all components of MCFC(molten carbonate fuel cell), corrosion of separator is one of the most decisive factor for commercializing of MCFC. In order to provide better understanding of corrosion behavior and morphology for gas channel of separator plate, post-analysis after cell operation for 1200 hours at $650^{\circ}C$ was performed by optical microscope, SEM and EPMA. Intergranular corrosion was observed on gas channel of separator plate. Corrosion product layer was identified as Fe-oxide, Cr-oxide and Ni-oxide by EPMA, and oxide thickness was measured with a $60{\mu}m-150{\mu}m$. Also, gas channel of separator was damaged by severe intergrannular attack with post analysis in consistent with immersion test. Moreover, pitting on the channel plate was observed with a depth of $18{\sim}24{\mu}m$. The results of immersion method are well agreement with post analysis measurements.