• 제목/요약/키워드: Fuel Ring

검색결과 144건 처리시간 0.026초

원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석 (Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel)

  • 김외태;김성수
    • Composites Research
    • /
    • 제34권4호
    • /
    • pp.257-263
    • /
    • 2021
  • 복합재료는 높은 비 강성 및 비 강도 특성으로 인해 기체 혹은 액체 연료를 저장하기 위한 압력 용기의 설계 및 제작에 널리 활용되고 있다. 이에 따라, 압력용기의 파열압력 또는 파단 변형률의 기계적 특성의 보다 정확한 측정은 상용화 전에 필수적 요소이다. 그러나, 기존의 시험방법을 활용한 복합재료 압력 용기의 안전성 검증은 하중 전달 매체의 변형으로 인한 추가적인 에너지 손실의 발생과, 불필요한 하중 및 모멘트의 발생 등의 한계가 있다. 따라서 본 연구에서는 수직기둥의 이론적인 하중전달 정도와 적용 가능한 수직방향 변위를 고려하여 세그먼트형 링 버스트 시험장치를 설계하였다. 또한, 세그먼트 형 링 버스트 시험장치의 균일한 압력분포를 검증하기 위해 수치해석을 활용하였고, 수압 시험방법과 링 시편의 원주방향 응력 및 변형률 분포를 비교하였다. 복합재료 압력용기의 파괴 거동을 모사하기 위해 Hashin 파손 기준을 적용하였고, 실험적으로 파단 변형률을 측정하여 이를 수치해석 결과와 비교하였다.

선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석 (Corrosion Evaluation for Advanced Fuel Cycle Facilities)

  • 황성식
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.213-217
    • /
    • 2012
  • 1) 선진 핵연료주기시설 관련 규제기술과 관련하여 인허가 안전심사의 경험이 없으며, 선진 핵연료주기시설 인허가를 위한 규제체계 및 안전성 평가방법 등의 개발이 필요한 단계이며 관련기기와 제반 공정에서 재료의 내식성을 평가하는 기준마련이 시급하다. 2) 선진 핵주기시설 관련 국내 기술수준을 분석하였고 그 핵심 공정인 전해환원, 전해정련, 전해제련공정의 실험변수를 조사하고 평가 필요항목을 정리하였다. 3) 전해환원과 전해정련공정의 경우 Hot-cell 내에 수분 및 산소가 일정 수준 이하로 유지되는 경우, 재료의 부식은 고려하지 않아도 되나 우라늄 잉곳 제조 공정에서 수냉 코일을 사용하게 되는 경우 물에 의한 부식을 고려해야 한다. 4) 전해 제련공정의 경우 LCC, RAR, Cd 증류공정에서 플랜지의 O-ring을 보호하기 위해 수냉 코일을 사용하게 되는 경우 물에 의한 부식을 고려해야 한다.

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel

  • Cho, Yun-Ju;Islam, Annana;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • 제3권2호
    • /
    • pp.43-46
    • /
    • 2012
  • In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotron resonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have been combined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturated cyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with more than two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings were identified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compounds were observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICR MS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each other for more complete understanding of oil samples.

액체로켓엔진용 가스발생기의 연소성능시험 (Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine at Design Point)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.125-130
    • /
    • 2003
  • 본 논문에서는 액체로켓엔진에서 터보펌프의 160kW급 터빈을 구동하고, 액체산소와 케로신을 추진제로 사용하는 가스발생기의 설계점 연소성능시험 결과에 대해 논의하였다. 충돌형 F-O-F 인젝터, 물냉각 채널을 가진 연소실, torch ignitor, turbulence ring 그리고 측정 링을 갖는 가스발생기에 대해 기술하였고, 점화, 연소, 종료 등의 시험 cyclogram에 대해 언급하였다. 설계점에서의 연소시험 및 turbulence ring 장착여부, 연소실 길이 변화에 따른 연소시험의 결과들에 대해 기술하였다. 연소시험 결과 가스발생기는 설계점에서 안정된 작동성을 보여주었고, 연소압력 및 온도 등의 성능이 예측치에 근접하는 결과를 보여 주었다. Turbulence ring은 출구에서의 가스온도를 균일하게 분포시켜 효과적인 혼합 장치임을 보여 주었고, 4-6msec 정도에서의 잔류시간에서는 연소효율의 차이가 크지 않음을 알 수 있었다. 가스발생기 출구에서의 온도는 공급되는 추진제의 O/F ratio에 따라 매우 민감하게 반응함을 알 수 있었다.

  • PDF

저 기화성 연료를 사용한 직접분사식 과급 가솔린엔진에서 전 부하 스모크 저감을 위한 시스템 최적화에 관한 연구 (An Experimental Analysis for System Optimization to Reduce Smoke at WOT with Low Volatile Fuel on Turbo GDI Engine)

  • 김도완;이승환;임종석;이성욱
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2015
  • This study is a part of the high pressure injection system development on the Turbo GDI engine in order to reduce smoke emission in case of using the low volatile(high DI) fuel which is used as normal gasoline fuel in the US market. Firstly, theoretical approach was done regarding gasoline fuel property, performance, definition of particle matters and its creation as well as problems of the high DI fuel. In this experimental study, 2L Turbo GDI engine was selected and optimized system parameter was inspected by changing fuel, fuel injection mode (single/multiple), fuel pressure, distance between injector tip and combustion chamber, start of injection, intake valve timing in engine dyno at all engine speed range with full load. In case of normal gasoline fuel, opacity was contained within 2% in all conditions. On the other hands, in case of low volatile fuel (high DI fuel), it was confirmed that the opacity was rapidly increased above 5,000 rpm at 14.5 ~ 20 MPa of fuel pressure and there were almost no differences on the opacity(smoke) between 17 MPa and 20 MPa fuel pressure. According to the SOI retard, smoke decrease tendency was observed but intake valve close timing change has almost no impact on the smoke level in this area. Consequently, smoke decrease was observed and 16% at 6000rpm respectively with injector washer ring installed. By removing injector washer to make injector tip closer to the combustion chamber, smoke decrease was observed by 46% at 5,500 rpm, 42% at 6,000 rpm. It is assumed that the fuel injection interaction with cylinder head, piston head, intake and exhaust valve is reduced so that impingement is reduced in local area.

DEVELOPMENT OF AN IMPROVED FARE TOOL WITH APPLICATION TO WOLSONG NUCLEAR POWER PLANT

  • Lee, Sun Ki;Hong, Sung Yull
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.257-264
    • /
    • 2013
  • In Canada Deuterium Uranium (CANDU)-type nuclear power plants, the reactor is composed of 380 fuel channels and refueling is performed on one or two channels per day. At the time of refueling, the fluid force of the cooling water inside the channel is exploited. New fuel added upstream of the fuel channel is moved downstream by the fluid force of the cooling water, and the used fuel is pushed out. Through this process, refueling is completed. Among the 380 fuel channels, outer rows 1 and 2 (called the FARE channel) make the process of using only the internal fluid force impossible because of the low flow rate of the channel cooling water. Therefore, a Flow Assist Ram Extension (FARE) tool, a refueling aid, is used to refuel these channels in order to compensate for the insufficient fluid force. The FARE tool causes flow resistance, thus allowing the fuel to be moved down with the flow of cooling water. Although the existing FARE tool can perform refueling in Korean plants, the coolant flow rate is reduced to below 80% of the normal flow for some time during refueling. A Flow rate below 80% of the normal flow cause low flow rate alarm signal in the plant operation. A flow rate below 80% of the normal flow may cause difficulties in the plant operation because of the increase in the coolant temperature of the channel. A new and improved FARE tool is needed to address the limitations of the existing FARE tool. In this study, we identified the cause of the low flow phenomena of the existing FARE tool. A new and improved FARE tool has been designed and manufactured. The improved FARE tool has been tested many times using laboratory test apparatus and was redesigned until satisfactory results were obtained. In order to confirm the performance of the improved FARE tool in a real plant, the final design FARE tool was tested at Wolsong Nuclear Power Plant Unit 2. The test was carried out successfully and the low flow rate alarm signal was eliminated during refueling. Several additional improved FARE tools have been manufactured. These improved FARE tools are currently being used for Korean CANDU plant refueling.

전기점화 기관 간극 체적 내 미연탄화수소의 산화 모델링 (Modeling of Piston Crevice Hydrocarbon Oxidation in SI Engines)

  • 최회명;김세준;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.884-889
    • /
    • 2001
  • Combustion chamber crevices in SI engines are identified as the largest contributor to the engine-out hydrocarbon emissions. The largest of crevice region is the piston ring pack crevice. To predict and understand the oxidation process of piston crevice hydrocarbons, a 3-dimensional numerical simulation method was developed. A engine shaped computational mesh with moving grid for piston and valve motions was constructed. And a 4-step oxidation model involving 7 species was used and the 16 coefficients in the rate expressions were optimized based on the results from a detailed chemical kinetic mechanism for the oxidation condition of engine combustion chamber. Propane was used as a fuel in order to eliminate oil layer absorption and liquid fuel effect.

  • PDF

과농조건인 $CH_4/CH_3Cl$ 예혼합화염에서 산소부화가 PAH 생성에 미치는 효과 (The Effect of the Oxygen-Enrichment on the PAH Production in Fuel-Rich $CH_4/CH_3Cl$ Premixed Flames)

  • 이기용
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.9-14
    • /
    • 2010
  • Numerical simulations of freely propagating fuel-rich $CH_4/CH_3Cl$ premixed flames were performed at atmospheric pressure in order to understand the effect of the oxygen enrichment on the production of PAH. A chemical kinetic mechanism was used, which involved 157 gas-phase species and 1693 forward reactions. The calculated flame speeds were compared with the experiments for the flames established on the equivalence ratios of 1~1.6, the results of which were in good agreement. As the level of oxygen enrichment was increased, the concentrations of one or four ring aromatic hydrocarbons were decreased. This might cause the fact that the contribution of PAH species to soot was weakened.

반응과 비반응 제트유동에서 단일 와동의 동적 거동에 대한 수치해석적 연구 (A Numerical Investigation on the Dynamic Behaviors of Single Vortex in a Reacting and Non-reacting Jet Flow)

  • 황철홍;오창보;이대엽;이창언
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.35-40
    • /
    • 2002
  • The dynamic behaviors of the single vortex in a reacting and non-reacting methane-air jet flow were investigated numerically. The numerical method was based on a predictor-corrector for low Mach number flow A two-step global reaction mechanism was adopted as a combustion model. After fuel and air were developed entirely in computational domain, the single vortex was generated by an axisymmetric jet that was impulsed to emit a cold fuel. Through comparisons of single vortex in reacting and non-reacting jet flow, it was found that global dynamic behaviors and the mechanisms leading to the formation, transport processes of vortex ring were influenced significantly by heat release from reaction. In addition, the interaction between a single vortex and flame bulge generated by buoyance effect in a reacting jet flow was found.

  • PDF