• Title/Summary/Keyword: Fuel Rich Region

Search Result 38, Processing Time 0.024 seconds

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

Equivalence Ratio Measurements in Gas Spray Using Laser Raman Scattering (Laser Raman Scattering을 이용한 가스 분무내 당량비 계측에 관한 연구)

  • Jin, S.H.;Park, K.S.;Song, J.I.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.7-14
    • /
    • 1997
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air mixture in injected spray. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity signal. Raman shifts and Raman scattering cross -sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ are measured precisely. Our results show an excellent agreement with those of other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air shows that $O_2:N_2=0.206:0.794$. We used gas injector which was operated at 1 bar. Methane is used as a fuel. Spray region is $10mm\times37mm$ and this region is divided into 80 points. In Raman signals are obtained and ensemble averaged for each point. 3-d and contour plot of distribution of equuivalence ratio is presented. Our measured results show that the equivalence ratio of methane/air mixture in methane-rich region is reasonable. However, more study is necessary for methane-lean region because background noise level is almost same as Raman intensity of methane.

  • PDF

Ignition Test of an Oxidizer Rich Preburner (산화제과잉 예연소기 점화시험)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Jeon, Jae-Hyoung;Lee, Seon-Mi;Hong, Moon-Geun;Ha, Seong-Up;Kang, Sang-Hun;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.869-872
    • /
    • 2011
  • Ignition tests of an oxidizer rich preburner for a staged combustion cycle liquid rocket engine were performed to evaluate combustion performance. Design operation conditions of the tested oxidizer rich preburner are about 60 of OF ratio and 20 MPa of combustion pressure. The entire kerosene and some LOx injected into the mixing head is burned in combustion chamber and the remaining LOx injected through center holes of combustion chamber is vaporized. Full flow ignition method with hypergolic fuel was used. Each propellant was supplied in two stages for soft ignition. Test results, low frequency oscillation was occurred in low flow rate conditions under 45% of design flow rate. Stable ignition in the course of design combustion pressure was able to induce by minimization of low flow rate ignition region to escape low frequency oscillation.

  • PDF

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine (디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

Comparision of Combustion Characteristics of the Different Property Coal in Cyclone Combustor (사이클론 연소기에서 성상이 다른 석탄의 연소 특성 비교)

  • Hong, Sung-Sun;Hwang, Kap-Sung;Choi, Byung-Sun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.337-344
    • /
    • 1994
  • Two coals which have a quite different properties were selected to compare the combustion characteristics in a cyclone combustor. The capacity of the combustion test rig is about 75kW and total volume is 5.7 liters. The pulverized sample coals are well burned from fuel rich(air ratio 0.4) to fuel lean(airs ratio 1.6). Two different property coals show quite different patterns of ash collection in slag pot, dust separator and combustion chamber. Combustion temperature of subbituminous coal is about $100^{\circ}C$ lower than bituminous coal at the entire region, and in case of bituminous coal, hot spot appeared at the lower part and axial line of the combustion chamber.

  • PDF

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

Tomographic Reconstruction of a Non-axisymmetric Diffusion Flame (자발광 확산 사각화염 내부 구조의 단층 진단)

  • Yang, In-Young;Ha, Kwang-Soon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.105-115
    • /
    • 1999
  • The structure of a non-axisymmetric propane diffusion flame was investigated. Tomographic reconstruction method to convert the line-integrated self-emission data of a fuel-rich diffusion flame with square cross-section was applied to get the spatially reconstructed emission data. Modified Shepp-Logan filter and concentric squares raster were chosen for reconstructing arbitrarily shaped object in this process. Spatially reconstructed emission data were then interpreted to several physical quantities, such as flame edge, FWHM, perimeter and 3-D flame temperature distribution. Necessary assumptions were discussed and the results were interpreted. In comparison with axisymmetric flame, flame edge was developed higher, and sooting region of upstream was broader than in this non-axisymmetric one. At some height, the flame was shrunk very rapidly and finally formed circular cross-section.

  • PDF

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).