• Title/Summary/Keyword: Fuel Particles

Search Result 514, Processing Time 0.032 seconds

Moldability of graphite composite bipolar plate for PEM fuel cell (PEM 연료전지 분리판용 흑연입자 복합재의 성형성 평가)

  • Lee H.S.;Kim S.G.;Kim H.S.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.89-90
    • /
    • 2006
  • The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials fur bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding, and design of experiments (DOE) was applied to the tests to evaluate moldability. Results showed that land width and channel depth were two significant factors for moldability, and channel width had little influence on the moldability.

  • PDF

Modelling of the Electrochemical Performance of Functionally Graded Fuel Cell Electrodes by Discrete Simulations

  • Schneider, L.C.R.;Martin, C.L.;Bultel, Y.;Kapelski, G.;Bouvard, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.916-917
    • /
    • 2006
  • Solid Oxide Fuel Cell technology uses powder processes to produce electrodes with residual porosity by partially sintering a mixture of electronically and ionically conducting particles. We model porous fuel cell electrodes with 3D packings of monosized spherical particles. These packings are created by numerical sintering. Each particle-particle contact is characteristic for an ionic, electronic or electrochemical resistance. The numerical packing is then discretized into a resistor network which is solved by using Kirchhoff's current law to evaluate the electrode's electrochemical performance. We investigate in particular percolation effects in functionally graded electrodes as compared to other types of electrodes.

  • PDF

Combustion Efficiency of Boron Carbide Fuel Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.722-725
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those bum in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperature, is coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

  • PDF

An Experimental Study on Characteristics of Soot by Pyrolysis of Fuel with Different Sulfur Contents. (연료의 황 함량에 따른 열분해 매연입자 특성화의 실험적 연구)

  • Lee, Seunghoon;Lim, Sangchul;Ahn, Teakook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.261-264
    • /
    • 2015
  • Soot particles of diesel and bunker-A with different sulfur contents were generated by pyrolysis with varying conditions of fuel flow rate and residence time in the ceramic tube at $1300^{\circ}C$. TEM and particle size analyzer were used for analysing the primary and the secondary particle size distributions. The results showed that the sulfur content in fuel influences soot inception while the fuel concentration and residence time affects the growth of incepted soot particles.

  • PDF

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Preparation of an Intermediate and Particle Characteristics for HTGR Nuclear Fuel (고온가스로 핵연료 중간물질 제조와 분말특성)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Lee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.124-131
    • /
    • 2007
  • In this study, first the ADU gel particle, an intermediate for final $UO_2$ kernel of a HTGR nuclear fuel, was prepared from sol-gel method using the broth solution which was made by mixing of the uranyl nitrate, poly vinyl alcohol and tetra-hydrofurfuryl alcohol. The prepared dried-ADU gel particles were converted to the $UO_2\;via\;UO_3$ from thermal treatment with the 4% $H_2$ atmosphere. The sizes of the spherical liquid droplets appeared $1900{\sim}2100{\mu}m$, and the harmony between the flow rate of the broth solution and the frequency and the amplitude of a vibrating system are important factors for the spherical ADU gel particles via the mono size spherical droplets. From the XRD and FT-IR analyses, the prepared ADU gel particles were judged to be a $UO_3{\cdot}xNH_3{\cdot}yH_2O$ form, and the most important factor during the thermal treatment of the dried-ADU gel particle must be avoided a rapidly heating rate in the range of $180{\sim}400^{\circ}C$, and the heating rate should be kept below $5^{\circ}C/min$.

Spherical UO3 Gel Preparation Using the External Gelation Method (External Gelation 방법을 이용한 구형 UO3 Gel 입자 제조)

  • Jeong, KyungChai;Kim, YeonKu;Oh, SeungChul;Cho, Moon-Sung;Lee, YoungWoo;Chang, JongWha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.729-736
    • /
    • 2005
  • HTGR (High Temperature Gas-cooled Reactor) is spotlighted to next generation nuclear power plant for producing the clean hydrogen gas and the electricity. In this study, the spherical $UO_3$ gel particles were prepared by the external gelation process, and the characteristics of these particles were analyzed the particle shape, composition of precipitate, and thermal decomposition characteristics with the Streoscope, FT-IR, and X-ray diffractometer. Raw material of the ADUN (Acid Deficient Uranyl Nitrate) solution, which has [$NO_3$]/[U] mole ratio = 1.75, was obtained from dissolution of the $U_{3}O_{8}$ powder with concentrated $HNO_3$, and its concentration is 3.5 M-U/l. The broth solution is prepared with the ADUN, urea, PVA, and THFA solution. The droplets of the broth solution was made through a nozzle system. From this study, we obtained the following results; 1) an externel chemical gelation process is a suitable method in the spherical $UO_3$ particle production, 2) the particle shape are changed by an urea mixing time, THFA volume, and the viscosity of the broth solution, 3) the amorphous $UO_3$ particles obtained from these experiments was converted to $U_{3}O_{8}$ and then $UO_2$ by heat treatment in hydrogen atmosphere at $600^{\circ}C$.

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane (음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가)

  • Dong Jun Lee;Kwang Seop Im;Ka Yeon Ryu;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.137-147
    • /
    • 2023
  • In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.

The Effect of Air and Spray Turbulence on the Progress in a D.I. Diesel Engine(II)-Combustion Chamber Design for the Use of Emulsified Diesel Oil with Water Particles- (직접분사식 디젤기관의 연소실 형상과 화염의 발달 (2)-유화액연료용 연소실의 형상-)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3054-3062
    • /
    • 1995
  • Recently, the improvement of fuel economy and the reduction of exhaust smoke and NOx have been successfully achieved by supplying diesel engines with emulsified diesel oil with water particles. In the present paper, the difference between the combustion of injected emulsified fuel and that of diesel oil spray is clarified by means of taking high-speed and color photographs of the flames in the engine cylinder. As the results, the two kinds of fuels show different combustion behavior each other in the growth of initial flame and in the termination of combustion process in the cylinder. Then, suitable combustion chamber design for the use of emulsified fuel is discussed on the basis of experimental data for various distribution of spray in different kinds of piston cavities. Some methods of clearing troubles caused by emulsified fuel injection are also discussed on the basis of performance tests with a remodeling test engine.