• 제목/요약/키워드: Fuel Particles

검색결과 518건 처리시간 0.023초

유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석 (Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells)

  • 성후광;;장정희;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도 (Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes)

  • 정양일;김일현;김현길;장훈;이승재
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어 (Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application)

  • 허준;윤혁준;최지훈;문채린;최순목
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향 (Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process)

  • 김연구;정경채;오승철;서동수;조문성
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

축대칭 이류체 분무화염의 구조에 관한 연구 (A Study on the Structure of Axial-Symmetric Two-Phase Spray and Flame)

  • 정보윤;고대권;안수길
    • 수산해양기술연구
    • /
    • 제24권1호
    • /
    • pp.36-43
    • /
    • 1988
  • Boilers and diesel engines have many problems because their exhaust particles, i.e., soot have lots of bad influence on environment. And it's spray and flame have fundamentally axial symmetric shape. To investigate the relationship between fuel concentration distribution of spray and soot concentration distribution as well as temperature distribution of flame, we made a axial symmetric two phase spray-flame and analyzed the structure of is. The measuring method is the principle of the light extinction method for the spray-flame and onion peeling model is applied to analyze the radial distribution of fuel and soot concentration. The temperature of flame is measured by ø 0.4mm Pt-Pt.RH 3% thermocouple. The oils for the experiments are diesel oil and 10% water emulsified diesel oil. It was found that the soot concentration becomes higher as it comes near to the center of flame, and the fuel concentration does, too. And the soot concentration level of diesel oil is generally higher than that of the 10% water emulsified fuel. The maximum flame temperature of diesel oil is 1,17$0^{\circ}C$, however, 10% water emulsified diesel oil is 1,27$0^{\circ}C$.

  • PDF

가압 기포유동층에서 산소전달입자들의 환원반응특성 (Reduction Characteristics of Oxygen Carriers in a Pressurized Bubbling Fluidized Bed)

  • 윤주영;배달희;백점인;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.589-596
    • /
    • 2016
  • Effects of pressure, temperature, gas velocity, and fuel flow rate on reduction of three oxygen carriers, SDN70, OC-1, OC-2, were measured and investigated in a pressurized bubbling fluidized bed reactor. Among three oxygen carriers OC-2 was selected as the best oxygen carrier in view of fuel conversion and $CO_2$ selectivity. However, all oxygen carriers showed good reactivity even at high pressure conditions. SDN70 particle showed maximum reactivity at $900^{\circ}C$ and low reactivity at $950^{\circ}C$. However, reactivity decay of OC-1 and OC-2 particles at high temperature condition was negligible. The fuel conversion and the $CO_2$ selectivity slightly decreased as the gas velocity increased, whereas they are slightly increased as the fuel concentration increased.

Effects of The Torrefaction Process on The Fuel Characteristics Larix kaempferi C

  • Lee, Jaejung;Ahn, Byoung Jun;Kim, Eun-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권2호
    • /
    • pp.196-205
    • /
    • 2015
  • The aim of this study was to evaluate the fuel characteristics of thermally treated wood chips of the Larix kaempferi C. As torrefaction temperature was increased ($200^{\circ}C$ to $300^{\circ}C$), the carbon content, calorific value, and mass loss of torrefied wood chips increased significantly. The torrefied wood chips were shown to have hydrophobic properties even when only treated by mild torrefaction. The energy required to grind torrefied wood chips was reduced by the torrefaction process. Different sizes of wood chips were used in this study; however, this produced almost no difference in the fuel characteristics of processed Larix kaempferi C, except in the distribution of ground wood particles. Similar results were observed when the wood chips were torrefied for different lengths of time (15 min to 60 min) at a constant temperature. Torrefaction was shown to have positive effects on the fuel characteristics of Larix kaempferi C, including improved energy density, storage, and grindability.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal;Anil Prasad;Jayangani Ranasinghe;Ericmoore Jossou;Lukas Bichler;Jerzy Szpunar
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3725-3731
    • /
    • 2023
  • Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.

바이오디젤과 디젤 연기입자의 광학특성 및 무차원 광소멸계수 측정에 관한 연구 (A Study of Optical Characteristics for Biodiesel and Diesel Smoke Particles and Measuring their Dimensionless Light Extinction Constants)

  • 최석천;장영석;박설현;김연규
    • 한국화재소방학회논문지
    • /
    • 제30권1호
    • /
    • pp.37-42
    • /
    • 2016
  • 바이오디젤(Soy Methyl Ester, B100)과 디젤(Ultra Low Sulfur Diesel, ULSD)의 연소과정에서 발생되는 연기입자의 무차원 광소멸계수를 측정하였다. 무차원 광소멸계수는 633 nm의 He-Ne 레이저를 이용하여 광학적 방법으로 측정된 연기입자의 체적분율과 중력식 필터법에 의해 채집된 연기입자의 체적분율을 비교하여 결정하였다. 633 nm 대역에서 측정된 평균 무차원 광소멸계수는 각각 바이오디젤의 연기입자가 11.8, 디젤 연기입자가 11.1으로 측정 불확도 범위(${\pm}10.1%$) 내에서 거의 유사하였다. 다만, 라만 spectrum 분석결과를 통해 각 연료에서 발생된 연기입자 간의 광소멸(광흡수/광산란) 특성은 서로 상이할 수 있음을 확인할 수 있었다.