• Title/Summary/Keyword: Fuel Oil Price

검색결과 116건 처리시간 0.022초

Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발 (Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile)

  • 김진우;박성우;이평국;이왕수;선재욱
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

최적 항로 평가 시스템의 개발 및 적용에 대한 소개 (An Introduction for Optimum Route Assessment System)

  • 박건일;이진호;김문성;방창선;최재웅;최경순
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.189-192
    • /
    • 2006
  • 고유가 시대에 정보시스템의 발달과 더불어 안전하고 경제적인 항해계획의 수립을 지원하는 시스템에 대한 요구가 증대되고 있다. 이에 저자들이 개발한 최적항로평가시스템에 대하여 그 개발 내용 및 적용 사례를 소개한다. 기상예보데이터를 이용하여 소요시간 및 연료소모량 관점에서 최적화된 항해 계획을 생성하며, Parametric roll 을 포함한 각종 내항성능 지표를 정량적으로 평가하여, 항해자로 하여금 항해의 안전성 및 경제성 관점에서 최적화된 항해 계획을 수립하도록 지원하는 시스템을 개발하였다. 개발된 시스템의 유효성은 실 항해중 적용한 사례 및 시뮬레이션 결과를 통해서 검증하였다.

  • PDF

하이브리드 차량용 클러치 자동화 기구의 특성 연구 (A Study on the Characteristics of the Clutch Automation Mechanism of Hybrid Vehicles)

  • 임원식;박성천
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.778-783
    • /
    • 2012
  • Due to the increase of oil price, the needs of the reduction of the fuel cost is rising. Therefore, necessity of hybrid vehicle that runs with engine and the electric motor is on the rise. In order to improve the performance of hybrid vehicle, many researches is carried out. Hybrid vehicles have been developed with the various layout such as serial type, parallel type, power split type, and multi-mode type. The multi-mode hybrid vehicles are designed to show the efficient driving characteristics at low speed and high speed. But the multi-mode system have the problem such as frequent clutch engagement. Frequent clutch engagement causes the shock of vehicles, and the shock inhibits the ride comfort. In this study, automation mechanism of clutch operation is proposed to mitigate the shock at engaging clutch. For this purpose, the dynamic characteristics of motor control is numerically analyzed by using Matlab/Simulink.

1kW급 가스엔진 열병합발전시스템 성능특성에 관한 연구 (The Operation Characteristics of Domestic 1kW Gas Fueled Internal Combustion Engine Cogeneration System)

  • 최재준;박병식;정대헌;임용훈;최영호;송대섭
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.321-324
    • /
    • 2009
  • The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and recently, the household cogeneration system has been the center object of attention because of the loss of power transmission and the reasonable energy consumption relative to the household (condensing) boiler producing heat only. A tiny, 1kW of electrical output, gas fueled internal combustion engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. With the emission characteristics, the cogeneration system was analyzed. It was showed the gas engine cogeneration system produced the lowest NOx level compared any other cogeneration system due to the three-way catalyst.

  • PDF

극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구 (CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed)

  • 최영도;손성우
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System)

  • 조용래;안경관;김정수;윤주현
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

전륜 서스펜션 성능향상을 위한 하이드로포밍 샤시 부품의 설계 최적화 (Design Optimization of Hydroforming Chassis Part for improving Front Suspension Performance)

  • 문만빈;김윤규;김효섭;진경수;김동학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2009
  • Recently, automotive companies have invested in vehicle weight reduction and clean car development because of oil price rises and environmental problems. In particular, USA car makers have developed the vehicle spending 1 liter per 34km complying with PNGV(Partnership for a new generation of vehicle) and Europe car makers have developed the vehicle spending 3 liters per 100km. The USA government announced "The green car policy" in order to boost production of more fuel effective cars in 2009. According to the policy, it will be restricted to sell the car which spends more than 1 liter per 14.9km by 2020. To satisfy the current situations on automotive market, hydroforming technology has widely adapted vehicle structures such as engine cradle, chassis frame, A pillar, radiator support, etc. However, automotive companies have to consider formability and performance to improve and maximize the benefit from this technology in advance of detail design. The paper deals with one of the vehicle weight reduction methods using tube hydroforming technology and platform commonality in front suspension. FEA simulation is also introduced to evaluate hydro-formability and NVH performance at the beginning of design stage which is the best way to reduce the failure cost.

  • PDF

식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화 (Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils)

  • 이태성;이영화;김광수;김욱;김관수;장영석;박광근
    • 한국자원식물학회지
    • /
    • 제25권5호
    • /
    • pp.624-632
    • /
    • 2012
  • 본 연구는 주요 구성지방산이 Oleic acid인 유채유, 동백유, 올리브유와 Palmitic acid가 주요 구성 지방산인 팜유를 기준으로 중량비로 혼합하여 지방산 조성 및 물성변화를 관찰 하였다. 지방산 조성의 변화를 전체적으로 살펴보면 50:50(w/w)비율에서는 Oleic acid은 유채유와 대두유의 혼합 시 42.8%로 가장 낮았고 동백유와 유채유의 혼합비율에서 72.1%로 가장 높았다. 75:25(w/w)유채유와 대두유 혼합비율에서 가장 낮았고 동백유와 올리브유의 혼합비에서 가장 높았다. 팜유를 기준으로 식물성 유지를 혼합하였을 시에는 다른 유지와 혼합 후 총 포화지방산은 감소하였다. 혼합 후 지방산 조절을 통한 산화안정성 및 저온에서의 유동성 개선이 기대 된다. 혼합 후 동백유 > 올리브유 > 유채유 순으로 산가 안전화 경향을 보였으며 이는 Oleic acid 함량에 따라 기인한 것으로 보인다. 또한 혼합을 통한 산화안정성을 개선시킬 수 있을 것으로 판단되며, 색도는 비율 및 유지에 따른 유의적인 변화를 보이지는 않았으나 바이오디젤 생산 정제공정에 있어서 혼합비율 조절에 따른 정제비용 절감이 기대 된다. 본 연구를 통하여 유지간 혼합에 의한 특성변화를 확인하고, 혼합유의 원료 다양성 확보 및 품질개선을 위한 정보를 얻어 향후 연구수행의 기초자료로 활용이 가능할 것으로 생각된다.

Corrosion Characteristics of Welding Zone by Types of Repair Welding Filler Metals and Post Weld Heat Treatment

  • Lee, Sung-Yul;Moon, Kyung-Man;Lee, Yeon-Chang;Kim, Yun-Hae;Jeong, Jae-Hyun
    • International Journal of Ocean System Engineering
    • /
    • 제2권4호
    • /
    • pp.209-213
    • /
    • 2012
  • Recently, the fuel using in the diesel engines of marine ships has been changed to a low quality of heavy oil because of the steady increase in the price of oil. Therefore, the wear and corrosion in all parts of the engine such as the cylinder liner, piston crown, and spindle and seat ring of exhaust valves has correspondingly increased. The repair welding of a piston crown is a unique method for prolonging its lifetime from an economic point of view. In this case, filler metals with a high corrosion and wear resistance are mainly being used for repair welding. However, often at a job site on a ship, a piston crown is actually welded with mild filler metals. Therefore, in this study, mild filler metals such as CSF350H, E8000B2, and 435 were welded to SS401 steel as the base metal, and the corrosion properties of the weld metals with and without post weld heat treatment were investigated using some electrochemical methods in a 0.1% $H_2SO_4$ solution. The weld metal welded with CSF350H filler metal exhibited the best corrosion resistance among these filler metals, irrespective of the heat treatment. However, the weld metal zones of the E8000B2 and 435 filler metals exhibited better and worse corrosion resistance with the heat treatment, respectively. As a result, it is suggested that in the case of repair welding with CSF350H and 435 filler metals, no heat treatment is advisable, while heat treatment is desirable if E8000B2filler metal is used with repair welding.

바이오디젤의 열적특성에 관한 연구 (A Study on Thermal Characteristics of Biodiesel)

  • 배병목;임우섭;사공성호;목연수;최재욱
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.92-97
    • /
    • 2010
  • 세계적으로 대기환경문제와 원유가격의 상승 그리고 비산유국의 안정적인 에너지공급의 대체에너지로서 부각된 바이오디젤은 현재까지 많은 연구가 진행되어 왔으나, 온도변화에 대한 열적거동에 관한 연구는 국내에서 수행되지 못했다. 따라서 본 연구에서는 일반디젤과 바이오디젤 그리고 이들 혼합물질의 인화점, 열분해 압력 그리고 열적 거동에 관한 연구를 수행하였으며, 그 결과 인화점과 열분해 압력변화에 있어서 바이오디젤은 일반디젤에 비해 인화점은 $182^{\circ}C$로 일반디젤의 $54^{\circ}C$ 보다 많이 높으며, 열분해압력도 바이오디젤의 경우 40.1bar, 일반 디젤의 경우 29.8bar로 바이오디젤의 열적 안정성이 상당히 높은 것으로 나타났다.