• Title/Summary/Keyword: Fuel Oil

Search Result 1,224, Processing Time 0.024 seconds

The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil (저열량 바이오매스 합성가스의 혼소특성)

  • Yoon, Sang-Jun;Kim, Young-Ku;Jeon, Chang-Joon;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.860-865
    • /
    • 2012
  • Although biomass syngas is very low calorific gas, it is utilized by means of dual fuel combustion technology in the fields of industrial furnace and boiler as a substitute oil technology. The basic structure of duel fuel combustion burner is designed so that low caloric gas fuel is supplied around an oil burner in the middle. In the present study, three types of mixing burners were manufactured to conduct performance experiment. Low caloric gas was evenly distributed around the oil burner and the method of changing the angle of gas nozzle was applied. CO generation decreased according to the increase of the amount of air for combustion. In addition, the shapes and colors of flame changed according to the proportions of gas and oil used. Remained flame after combustion was from the lack of atomization at the exit of oil burner. Although it was difficult to maintain the optimum air ratio due to different required air ratio for oil and syngas, stable combustion was able to maintained within excess oxygen concentration of 4.7~8.2%. From this study, it was shown that the oil atomization at the exit of fuel oil nozzle was promoted by the increased rate of syngas combustion and the CO concentration in flue gas lower than only fuel oil combustion.

Testing of Agricultural Tractor Engine using Animal-fats Biodiesel as Fuel

  • Kim, Youngjung;Lee, Siyoung;Kim, Jonggoo;Kang, Donghyeon;Choi, Honggi
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.208-214
    • /
    • 2013
  • Purpose: Performances of a tractor diesel engine fueled by three different animal fats biodiesels were evaluated comparing with light oil tractor in terms of power, fuel consumption rate, exhaust gases, particulate matter amount and field work capacity. Methods: Animal fats based on pig biodiesel were manufactured manually and tested for its engine performance in the tractor diesel engine and fuel adoptability in the field works. Four different fuels, three different content of biodiesel (BD20, BD50, BD100) and light oil, were prepared and tested in the four strokes diesel engine. Power output, fuel consumption rate and exhaust gases of the four fuels in the diesel engine were compared and discussed. Results: Power output of light oil engine was the greatest showing 5.3% difference between light oil and BD100, but 0.37% better power than BD20 engine power. Less exhaust gases of $CO_2$, CO, $NO_X$ and THC were produced from animal fats biodiesel than light oil, which confirmed that biodiesel is environmental friendly fuel. For fuel adoptability in the tractor, biodiesel engine tractor showed its fuel competitiveness comparing with light oil for tractor works in the faddy field. Conclusions: With four different fuel types of animal-fats biodiesel, performances of a four cylinder diesel engine for tractor were evaluated in terms of power, exhaust gases, particulate matters (PM) and field work capacity. No significant differences observed in the engine performances including power output and exhaust gases emission rate. No significant power difference observed between the various fuels including light oil on the engine running, however, amounts of noxious exhaust gases including $CO_2$ and $NO_X$ decreased as biodiesel content increased in the fuels. Field performances of animal-fats biodiesel tractor were investigated by conducting plowing and rotary operation in the field. Tilling and rotary performance of light oil tractor and BD20 tractor in the field were compared, in which about 10% travelling speed difference on both operations were monitored that showed light oil tractor was superior to BD20 tractor by 10%. Animal-fats can be an alternative fuel source replacing light oil for agricultural machinery and an environmental friendly fuel to nature.

A Study on the Quality Characteristics of Feedstocks for Power Bio-Fuel Oil (발전용 바이오중유용 원료물질의 품질특성 연구)

  • Jang, Eun-Jung;Lee, Mi-Eun;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.136-147
    • /
    • 2015
  • As it carry out RPS(Renewable Portfolio Standards), power producers are using the power bio-fuel oil to meet their RPS quota. In this study, we test the quality characteristics of raw materials for power bio-fuel oil and the property changes of power bio-fuel oil by the kind of feedstocks. The power bio-fuel oil and feedstocks were analyzed for item of quality standard such as acid number, viscosity and metal contents. And it was analyzed for composition distribution by FT-IT and HPLC. Such as low priced palm oil series has high acid number and ash contents due to high free-fatty acid and metal contents. And by-product of biodiesel have a tendency of high viscosity. The fuel properties of power bio-fuel oil, such as viscosity, acid number and metal contents are correlated with the constituent and the mixing ratio of the feedstocks.

A Study on Physico-Chemical Properties on Mixed Fuel Oil of Very Low Sulfur Fuel Oil-High Sulfur Fuel Oil (VLSFO-HSFO) (저유황-고유황 혼합연료유의 물리화학적 특성연구)

  • Song, In-Chul;Shin, Su-Hyun;Kim, Sae-Mi;Lee, Hee-Jin;Seo, Jeong-Mog
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.864-872
    • /
    • 2020
  • In accordance with the sulfur regulations of the International Maritime Organization (IMO), very low sulfur fuel oil (VLSFO) shows various production-dependent physico-chemical properties. This study aims to use as basic data for oil spill response according to study of physico-chemical characteristics of VLSFO and mixed fuel oil of VLSFO-HSFO. The mixed fuel oil was prepared by mixing 25, 50, 75 mass% of HSFO with VLSFO containing 0.46 and 0.36 mass% of sulfur. The physico-chemical properties such as the kinematic viscosity, pour point and distribution of Saturates, Aromatics, Resins, and Asphaltenes (SARA) were studied in the laboratory. As mixed of 75 mass% of HSFO with high the kinematic viscosity and low pour point in VLSFO, the kinematic viscosity of the mixed fuel oil increased to 350.2 %, and VLSFO with pour point of 23℃ and -11℃ lowered or raised to -3℃ and -6℃ respectively. As HSFO was mixed in VLSFO with a small Asphaltenes distribution, the Saturates distribution decreased to 68.8% and Asphaltenes distribution increased to 1,417 % dramatically.

Size and Shape Optimization of the Oil Pump for Fuel Consuming Reduction (엔진 연비 향상을 위한 오일펌프 사이즈/형상 최적화)

  • Jo, Sok-Hyun;Nam, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Generally block imbedded type oil pump is adopted to make a small engine. In this paper 1D/3D numerical simulations were conducted to reduce energy consumption of the block imbedded type oil pump. At each stage of engine development we have estimated the oil flow rate and pressure to optimize oil pump sizes by using the 1D system analysis and then accomplished 3D CFD(Computational Fluid Dynamics) simulations to optimize oil pump shapes including inlet/outlet port. As a result, the energy consumption of oil pump has been reduced to nearly 27% and the engine fuel consumption to $1{\sim}1.5%$.

An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine (선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.

A theoretical investigation of mis-firing effects on the crankshaft axial vibration of diesel engine (박용디젤기관의 착화실패가 추진축계종진동에 미치는 영향에 관한 이론적 연구)

  • 변창주;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1988
  • Since the oil shocks of 1970s, the quality of the fuel oil for marine diesel engines has become more degarded than ever. When the poorer quality fuel is burned, carbon residues of the fuel oil cause blockage of the fuel injection valve nozzle and troubles of fuel injection system. The mis-firing of engine occurs due to the decrease of fuel quantity injected, the decrease of compression pressure in the slow speed range, the increase of fuel leaked and the high ignition temperature of degraded fuel etc. This paper is to investigate theoretically the effects of mis-firing on the crankshaft axial vibration of diesel engine. The cylinder pressure in operation is calculated by the computer aided simulation of closed cycle for a large two-stroke diesel engine and also the exciting force of axial vibration and the resonance amplitudes are calculated. And then, the condition of normal state, misfiring and one-cylinder cut-off operation are analyzed. The results of calculations show good agreements with those of the actual measurements.

  • PDF

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (선박의 연료품질 기반 군용선박의 연료품질 적용가능성 분석)

  • Hwang, Gwang-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.281-286
    • /
    • 2021
  • The International Maritime Organization recently proposed a policy to establish a preemptive response strategy for exhaust gas pollution on board ships according to the recent strengthening of the sulfur content regulations. Discussions on improving the fuel oil quality and reducing emissions are also ongoing. Fuel oil quality information, which is one of the main concerns internationally, is increasing as the sulfur content standard is being applied from the current 3.5% to 0.5% by 2020. From the perspective of shipping companies and recipients, the essential quality of fuel oil is also requested for domestic and international fuel oil information, basic properties, correlation information between characteristics for application of solid ships and ships. The current standard for the basic quality of fuel oil is generally used, but the nature and composition of the fuel oil are very complex, and the interpretation of the basic quality is complicated because there are many cases outside the scope of the basic standard. Various factors were analyzed for the basic quality of fuel oil in terms of the basic quality of fuel oil, optimization of operation in ships, and fuel efficiency in ships. Moreover, the possibility of applying the standard according to the dilution was suggested.

An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature (냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구)

  • Cho, Won-Joon;Kim, Hyung-Ik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace (중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교)

  • Shin, Myeung-Chul;Kim, Se-Won;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF