• 제목/요약/키워드: Fuel Nozzle

검색결과 624건 처리시간 0.026초

분사노즐 형상 변화와 초음파 에너지 부가장치를 이용한 디젤기관의 성능특성(I) (Performance Characteristics of a Diesel Engine Using the Change of Injection Nozzle Type and Ultrasonic-Energy-Added System(I))

  • 최두석;류정인
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.160-170
    • /
    • 1997
  • The objective of this study is to investigate the atomization characteristics and the performance characteristics of a C. I. engine by using the changes of the injection nozzle type and the ultrasonic-energy-added system. In order to evaluate the effect of ultrasonic energy and of change of injection nozzle type in the performance characte- ristics of a diesel engine, measurements of droplet size of diesel fuel were carried out by using Malvern system. In all types of injection nozzles, SMD of the ultrasonic- energy -added diesel fuel was smaller than that of the conventional diesel fuel and the more injection pressure increased, the more SMD decreased. There was a small increase in SMD with the distance from injection nozzle under all conditions of the injection nozzle types. The minimum SMD was found in the injection nozzle of B type. In the diesel engine test, there were three results about the engine performance. Compared with the injection nozzle of A type, B type had excellent effects in the engine performance. The most excellent effects about the engine performance were obtained in the case of ultrasonic-energy-added diesel fuel. In addition, the torque diagram in the case of ultrasonic-energy-added diesel fuel was more stable and periodical than others.

  • PDF

바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안 (A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel)

  • 서현규
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Development of Plate-type Fine Atomizing Nozzles for SI Engines with Intake-port Fuel Injection

  • Suzuki, Takashi;Tani, Yasuhide
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.45-57
    • /
    • 2007
  • This paper presents both experimental and numerical studies regarding nozzles used for the SI engine application, particularly for the intake-port fuel injection type. The atomization mechanism of the multi-hole plate nozzle was investigated experimentally. It was found that the nozzle design added turbulence into the liquid-film jet and the jet disintegrated rapidly. Based on the results, various plate types for the nozzle were developed and tested; six hole nozzle for liquid jet interaction, plate-type nozzle with flat duct channel, and the simpler structured nozzle. The spray characteristics of the prototype nozzles were examined experimentally while the internal flow of the nozzle was investigated computationally. It was shown that turbulent liquid-film was injected and atomization quality was improved by controlling the internal flow condition of the plate-type nozzle.

  • PDF

노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향 (Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

가스보일러용 세미 분젠형 버어너의 배기 특성 연구 (An Experimental Study on Emission Characteristics of a Semi-Bunsen Type Gas Burner)

  • 정종수;박은성
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.353-358
    • /
    • 1995
  • The emission characteristics of a semi-Bunsen type burner for gas boilers were studied experimentally. The experimental results reveal that nitric oxide emission increases with fuel flow rate. It is linearly proportional to total fue flow rate at a small amount of fuel up to 0.4 liters per minute. It does not change significantly within the range of fuel flow rate from 0.4 to 1.2 liters per minute per nozzle and increases at large fuel flow rate. The carbon monoxide emission reveals to be dependent upon the fuel flow rate per each nozzle and the number of fuel injection nozzles. Diameter of an injection nozzle could have an effect on the emission characteristics of this type of burners. However, there is no marked change in the nitric oxide emission if the total fuel flow rate is same with different nozzle sizes.

  • PDF

Structural Characteristics of Turbulent Diffusion Flame Combusted with Simulated Coal Syngas

  • Park, Byung-Chul;Kim, Hyung-Taek;Chun, Won-Gee
    • 에너지공학
    • /
    • 제11권4호
    • /
    • pp.350-358
    • /
    • 2002
  • The present work determined the flame structure characteristics of coal syngas combusted inside swirl burners with various nozzle types. Fuel nozzle types are largely classified into two groups of axial and tangential. Experiments were carried out for investigating the effects of fuel nozzle geometry, fuel composition ratio, heating rate, excess air, and degree of swirl on the turbulent diffusion flame structure. To determine the characteristics of the flame structure, axial type fuel nozzle diameter of laboratory-scale combustor is varied to 1.23, 1.96, and 2.95 ㎜ and the direction of tangential type nozzles are varied to radial, clockwise, and counter-clockwise. The comparison of the experimental results was performed to understand functional parameters relating the flame structure. Data analysis showed that the vertical straight flame height generally decreased with increasing swirl number and decreasing axial type nozzle diameter. Flame height established with tangential type nozzle is 3 times shorter than that with vertical type. The flame structures among the 3 different tangential fuel nozzles relatively showed no particular difference. By increasing the heating rate, the width of flame increased generally in both vertical and tangential flame. Within the present experimental parameters of the investigation, flame structure is mainly depends on the nozzle type of the combustor. The visually investigated flame lengths are confirmed through the analysis of temperature profile of each flame.

액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구 (Investigation of Icing Phenomenon in Liquid Phase LPG Injection System)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

이중판 노즐형 지지격자 스프링의 지지 강성감소를 위한 형상 개선 (Shape Modification for Decreasing the Spring Stiffness of Double-plated Nozzle Type Spacer Grid Spring)

  • 강흥석;송기남;이재호;이강희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.400-405
    • /
    • 2001
  • Nozzle of the double-plated grid plays the role of the spring to support a fuel rod as well as to provide the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study the contact analysis between the fuel rod and the nozzle type spacer grid was performed by using ABAQUS standard to propose the preferable shape in tenn of spring performance. Two small cuts at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement.

  • PDF

마이크로 가스 터빈용 연소기의 연료 노즐의 유량 분배에 관한 수치 해석적 연구 (Numerical Study on Flow Distribution of Fuel Nozzles for a Combustor in a Micro Gas Turbine)

  • 김태훈;도규형;한용식;김명배;최병일
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.8-13
    • /
    • 2014
  • Flow distribution of fuel nozzles for a combustor in a micro gas turbine is numerically investigated. The fuel supply system for the present study has 12 single nozzles with a diameter of several hundred micrometers. A uniform temperature distribution of a combustor outlet should be achieved for maximizing the lives of the turbine blades and nozzle guide vanes. For this, it is very important to uniformly supply fuel to a combustor. In order to investigate flow distributions of fuel nozzles, numerical models for fuel nozzles are made and solved by a commercial code, ANSYS FLUENT. An effect of a fuel nozzle diameter and fuel flow rates on flow distribution of fuel nozzles is numerically investigated. As a result, non-uniformity is increasing as a diameter of a single fuel nozzle increases. Finally, an appropriate diameter of a single fuel nozzle is suggested.