• Title/Summary/Keyword: Fuel Management

Search Result 1,020, Processing Time 0.027 seconds

A Study of Optimized Operation for CO2 Emission and Aircraft Fuel Reduced Operation Procedures (온실가스배출 감소와 연료절감을 위한 최적 운용절차 방안에 관한 연구)

  • Hwang, Jeong-Hyun;Lee, Tae-Gwang;Hwang, Sa-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.62-70
    • /
    • 2013
  • As the aviation industry looks to the future, fuel saving and $CO_2$ emission reduction play a dominant role in meeting the business challenges presented by global financial uncertainty. The IATA and International Government effort to save fuels, and then save 4 billion gallons of fuel burned, while reducing $CO_2$ emissions by 34 million tons. The various reduction methods adapted airlines and airports. We focused on optimized flight operation procedures for saving fuel and reduction emission cases. IATA and Canada government research reports focused on four methods that Engine Core Washing, Portable Water Management, Single Engine Taxi, APU limit operation. Apply to domestic airlines fuel data, Engine Core washing was saving more than Twenty-four thousand tons $CO_2$ emissions.

Conceptual design of neutron measurement system for input accountancy in pyroprocessing

  • Lee, Chaehun;Seo, Hee;Menlove, Spencer H.;Menlove, Howard O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1022-1028
    • /
    • 2020
  • One of the possible options for spent-fuel management in Korea is pyroprocessing, which is a process for electrochemical recycling of spent nuclear fuel. Nuclear material accountancy is considered to be a safeguards measure of fundamental importance, for the purposes of which, the amount of nuclear material in the input and output materials should be measured as accurately as possible by means of chemical analysis and/or non-destructive assay. In the present study, a neutron measurement system based on the fast-neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) techniques was designed for nuclear material accountancy of a spent-fuel assembly (i.e., the input accountancy of a pyroprocessing facility). Various parameters including inter-detector distance, source-to-detector distance, neutron-reflector material, the structure of a cadmium sleeve around the close detectors, and an air cavity in the moderator were investigated by MCNP6 Monte Carlo simulations in order to maximize its performance. Then, the detector responses with the optimized geometry were estimated for the fresh-fuel assemblies with different 235U enrichments and a spent-fuel assembly. It was found that the measurement technique investigated here has the potential to measure changes in neutron multiplication and, in turn, amount of fissile material.

A System Dynamics Model of Alternative Fuel Vehicles Market under the Network Effect

  • Kwon, Tae-Hyeong
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.5-23
    • /
    • 2007
  • According to the system dynamics model of this study, if there is a significant network effect on vehicle operating costs, it is difficult to achieve the shift to AFV even in the long term without a policy intervention because the car market is locked in to the current structure. Network effect can be caused by an increasing return to scale in fuel supply sector as well as in maintenance service sector. It is also related to the fact that the reliability and awareness of consumers on new products increases with the growth of the market share of the new products. There are several possible policy options to break the 'locked in' structure of car market, such as subsidy on vehicle price (capital cost), subsidy on fuel (operating cost) and niche management policy. Combined policy options would be more effective than relying on a single policy option to increase the market share of AFV.

  • PDF

Transient response of unit PEMFC with the visualization study of cathode flooding under different stoichiometries (당량비 조건에 따른 PEM단위 연료전지의 과도 응답 특성 및 공기극 플러딩 연구)

  • Cho, Jun-Hyun;Kim, Han-Sang;Min, Kyoung-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.539-542
    • /
    • 2007
  • The transient response of PEMFC (proton exchange membrane fuel cell) is important criteria in the application of PEM fuel cell to real automotive system. In this work, using a transparent unit PEM fuel cell, the transient response and cathode flooding during load change are investigated. The cell voltage is acquired according to the current density change($0.3Acm^2$ to $0.6A/cm^2$) under various stoichiometry conditions and different flooding intensities, Also the cathode gas channel images are obtained by CCD imaging system simultaneously. The different level of undershoots appeared at the moment of load changes under different cathode stoichiometries and flooding intensities. The correlation of the dynamic behavior with stoichiometry and cathode flooding is induced from the results of these experiments.

  • PDF

Fabrication and Chacterization of Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 제조 및 특성 연구)

  • Song, Rak-Hyun;Lee, Byun-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1700-1702
    • /
    • 1996
  • Solid oxide fuel cell(SOFC) is an electrochemical energy device which converts the free energy of fuel gas directly to electric energy. SOFC has several diratinct advantages over other types of fuel cells: no use of noble metals, no requirement of a reformer, no problem of liquid electrolyte management, and no problem of corrosion by liquid electrolyte. In this study, we have investigated the cell components and the single cell of the planar SOFC fabricated by composite plate process, in which green films of electrolyte, anode and cathode were co-fired. The planar SOFCs were tested and the cell performance characteristics wag evaluated by using electrochemical methods.

  • PDF

Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge (일정 전류에서 연료전지의 비정상 특성)

  • Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.

Criticality Uncertainty Analysis of Spent Fuel Transport Cask applying Burnup Credit (연소도이득효과(BUC) 적용 사용후핵연료 운반용기의 임계 불확실도 평가)

  • Lee, Gang-Ug;Park, Jea-Ho;Kim, Do-Hyung;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 2011
  • In general, conventional criticality analyses for spent fuel transport/dry storage systems have been performed based on assumption of fresh fuel concerning the potential uncertainties from number density calculation of Transuranic and Fission Products in spent fuel. However, because of economic loss due to the excessive criticality margin, recently the design of transport/dry storage systems with Burnup Credit(BUC) application has been actively developed. The uncertainties in criticality analyses on transport/storage systems with BUC technique show strong dependance upon initial enrichment and burnup rate, whereas those in the conventional criticality evaluation based on fresh fuel assumption do not show such a dependance. In this study, regulatory-required uncertainties of the criticality analyses for BK 26 Cask, which is conceptually designed spent fuel transport cask with BUC corresponding to the limiting circumstances on nuclear power plants in Korea, are evaluated as a function of initial enrichment and burnup rate. Results of this study will be used as basic data for spent fuel loading curve of BK 26 Cask.

ESTIMATION OF THE FISSION PRODUCTS, ACTINIDES AND TRITIUM OF HTR-10

  • Jeong, Hye-Dong;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.729-738
    • /
    • 2009
  • Given the evolution of High-Temperature Gas-cooled Reactor(HTGR) designs, the source terms for licensing must be developed. There are three potential source terms: fission products, actinides in the fuel and tritium in the coolant. It is necessary to provide first an inventory of the source terms under normal operations. An analysis of source terms has yet to be performed for HTGRs. The previous code, which can estimate the inventory of the source terms for LWRs, cannot be used for HTGRs because the general data of a typical neutron cross-section and flux has not been developed. Thus, this paper uses a combination of the MCNP, ORIGEN, and MONTETEBURNS codes for an estimation of the source terms. A method in which the HTR-10 core is constructed using the unit lattice of a body-centered cubic is developed for core modeling. Based on this modeling method by MCNP, the generation of fission products, actinides and tritium with an increase in the burnup ratio is simulated. The model developed by MCNP appears feasible through a comparison with models developed in previous studies. Continuous fuel management is divided into five periods for the feeding and discharging of fuel pebbles. This discrete fuel management scheme is employed using the MONTEBURNS code. Finally, the work is investigated for 22 isotope fission products of nuclides, 22 actinides in the core, and tritium in the coolant. The activities are mainly distributed within the range of $10^{15}{\sim}10^{17}$ Bq in the equilibrium core of HTR-10. The results appear to be highly probable, and they would be informative when the spent fuel of HTGRs is taken into account. The tritium inventory in the primary coolant is also taken into account without a helium purification system. This article can lay a foundation for future work on analyses of source terms as a platform for safety assessment in HTGRs.

A Study on Thermal Management of Stack Supply Gas of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템의 스택 공급 가스의 열관리 문제에 관한 연구)

  • Park, Sang-Kyun;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • In this research, the fuel cell system model capable of generating codes in real time was developed to construct of a HIL (Hardware-In-the-Loop) for a SOFC-powered ship. Moreover, the effects of the distribution of the exhaust gas flow rates in a stack, the flow rates of fuels and temperature of air supplied on the temperature characteristics of fuels supplied to the cathode and the anode, the output power of the stack and system efficiency are examined to minimize the temperature difference between fuels supplied to the stack used in a 500kW SOFC system using methane as a fuel. As a result, the temperatures of fuels supplied to the cathode and the anode maintain at 830K when the opening factor of three-way valve located at outlet of turbine is 0.839. Also the process for optimization of methane flow rate considering the fuel cell stack and system efficiency is required to increase the temperatures of fuels supplied to the stack.

Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode (Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.531-538
    • /
    • 2019
  • As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.