• 제목/요약/키워드: Fuel Management

검색결과 1,030건 처리시간 0.024초

Fuel Bed에서의 지표화 확산에 관한 연구 (The Study on Surface Fire Spread in Fuel Bed)

  • 김정훈;김응식;김동현;김장환
    • 한국화재소방학회논문지
    • /
    • 제28권6호
    • /
    • pp.22-27
    • /
    • 2014
  • 본 연구에서는 Fuel bed를 이용한 실험을 통하여 지표화 확산에 의한 온도 분포, 화염 높이, 복사열, 확산속도 등을 측정하였다. 실험 변수로는 수종, 풍속 및 경사도 등을 사용하였다. 수종으로는 침엽수종인 소나무 낙엽과 활엽수종인 굴참나무 낙엽을 사용하였다. 풍속은 터널식 방 구조에서 간이풍속 장치를 이용하여 1 m/s, 3 m/s, 5 m/s 풍속을 조절하여 실험하였다. 경사도는 Fuel bed의 기울기를 $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$로 변화시켜 가며 조절하였다. 온도 분포 및 확산속도를 측정하기 위하여 K-type 1.6 mm 열전대를 35개를 격자모양으로 배치하였다. 측정을 위하여 복사열량계를 사용하였으며 이외에도 비디오 카메라 및 열화상 카메라를 사용하였다.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

연료전지/배터리 하이브리드 차량 개발 (Development of Fuel Cell/Battery Hybrid Vehicle)

  • 손영준;박구곤;임성대;엄석기;양태현;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

외부위협체의 충돌에 의한 연료탱크의 순간화재 발생가능성에 대한 고찰 (Consideration on Flash Fire of Fuel Tank by Plate and Projectile Impacts)

  • 이은민;박영주;이해평;이창현
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.62-67
    • /
    • 2014
  • This study was performed to analyze the vulnerability of the situation in which combat system is shot by external projectile impacts. In developing combat system, it is vital to consider the survivability as well as its mission capability because it is directly connected with loss of lives. Especially, when the parts which are susceptible to fire are shot under battle situation, the system is exposed to the dangerousness and the situation when the parts such as fuel tanks are impacted by external projectile impacts can lead to flash fire as a result of the leakage of fuel. Therefore, in this study the possibility of flash fire was calculated by analyzing a variety of variables supposing that fuel tank in the combat system is shot. The aim of this study is to suggest effective methods in the basic steps when combat system is designed.

AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석 (Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet)

  • 우종빈;김영현;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

Development of the Interface Module for an Effective Application of a Digital Mockup

  • Song, Tai-Gil;Kim, Sung-Hyun;Lim, Gwang-Mook;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2407-2409
    • /
    • 2005
  • As the cumulative amount of spent fuel increases, the reliable and effective management of the spent fuel has become a world-wide mission. For this mission, KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Conventional approach to the development of the process and the remote operation technology is to fabricate the process equipment on the same scale as the real environment and demonstrate the remote handling operation using simulated fuel called a mock-up test. But this mock-up test is expensive and time consuming, since the design may need to be modified and the equipment fabricated again to account for the problems found during a testing. To deal with this problem, we developed a digital mockup for the ACP. Also, for an effective utilization of the digital mockup, we developed user interface modules such as the data acquisition and display module and the external input device interface module. The result of this implementation shows that a continuous motion of the manipulator using the external device interface can be represented easily and the information display screens responded well to the simulation situation.

  • PDF

고분자전해질 연료전지 Dead-end 운전 최적화에 대한 실험적인 연구 (Experimental Analysis for Optimization of PEM Fuel Cell Dead-end Operation)

  • 이봉구;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.136-147
    • /
    • 2015
  • Dead-ended operation of Proton Exchange Membrane Fuel Cell(PEMFC) provides the simplification of fuel cell systems to reduce fuel consumption and weight of fuel cell. However, the water accumulation within the channel prohibits a uniform supply of fuel. Optimization of the purge strategy is required to increase the fuel cell efficiency since fuel and water are removed during the purge process. In this study, we investigated the average voltage output which depends on two interrelated conditions, namely, the supply gas pressure, purging valve open time. In addition, flow visualization was performed to better understand the water build-up on the anode side and cathode side of PEMFC in terms of a variety of the current density. We analyzed the correlation between the purge condition and water flooding.

첨가제에 따른 경유연료의 세탄가 유도세탄가 및 세탄지수 분석 (Determination of the Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel by Additives)

  • 임영관;김종렬;정충섭;임의순;김동길
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.375-381
    • /
    • 2010
  • 압축착화엔진용 경유연료 세탄가는 연료의 착화성을 나타내는 연료의 주요 특성중의 하나이다. 기존 CFR 엔진을 이용한 세탄가 분석의 번거로움을 피하기 위해 세탄가를 세탄지수로 대체하여 사용하고 있으나, 현재 다양한 첨가제에 의한 세탄가와 세탄지수 값의 차이를 보이고 있다. 본 연구에서는 첨가제로서 바이오디젤, 등유유분, 세탄가향상제를 베이스경유에 일정 비율로 혼합한 뒤, 세탄가, 유도세탄가 및 세탄지수를 분석하였다. 연구결과, 첨가제에 의한 세탄가와 유도세탄가는 유사한 결과값을 보였지만 세탄지수는 바이오디젤과 세탄가향상제 첨가시 현저한 분석값 차이를 보였다.