• 제목/요약/키워드: Fuel Injector

검색결과 562건 처리시간 0.021초

미산란 기법에 의한 고압 6공 연료분사기의 분무형상에 대한 실험적 연구 (Experimental Study on Spray Structure of a High Pressure 6-Hole Injector by Mie Scattering Technique)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.878-883
    • /
    • 2008
  • The spray characteristics of a high pressure 6-hole injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing, in-cylinder charge motion, fuel injection pressure and coolant temperature were investigated using the 2-dimensional Mie scattering technique. It was confirmed that the in-cylinder charge motion played a major role in the fuel spray distribution during the induction stroke while the propagation of fuel spray was restrained during the compression stroke by the increasing pressure and the upward moving piston. In additions, it was confirmed that the liquid fuel droplets existing at the sprays edges were vaporized by the increase of the coolant temperature.

GDI 인젝터의 동적 거동과 분사 특성에 대한 모델링 (Modeling Dynamic Behavior and Injection Characteristic of a GDI Injector)

  • 이계은;김나영;조영준;이동률;박성욱
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.210-217
    • /
    • 2017
  • A gasoline direct injection engine has an intake air temperature can be lowered by the fuel vaporization in the combustion chamber increase the volume efficiency is high compression ratio. Therefore, study for injection rate and characteristics which influence mixture formation in combustion chamber is important. Movement of the injector needle has a direct effect on the injection of the fuel, such as formation of cavitation, the fuel injection rate, etc. Therefore, recent studies on the dynamic characteristics of the injector considering the movement of the needle have been reported, but it takes a lot of time and cost to experimentally confirm the movement of the needle inside the injector. In this study, AMESim, a commercial 1-D code, and Star-CCM+, a 3-D CFD code, were used to predict the dynamic performance of the injector with needle motion. In order to predict the movement of the needle under the high pressure, the result of the surface pressure distribution according to the movement of the needle was derived by using the morphing technique of flow analysis. In addition, we predicted the injection rate of the injector considering the movement of the needle in conjunction with the 1-D code. The injection rate of the injector was measured by the BOSCH's method and the results were similar to those of the simulation results. This method can predict the injection rate and injection characteristics and this result is expected to be used to predict the performance of gasoline direct injection engines with low cost and time in the future.

Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용 (Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection)

  • 염기태;박정서;배충식;박정남;김성근
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

로켓엔진 분사면의 냉각성능 향상 (Cooling Performance Enhancement of a Rocket Engine Injector Face Plate)

  • 조원국;설우석
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.92-100
    • /
    • 2005
  • 로켓엔진 연소기의 분사면 냉각성능을 개선하기 위한 연료 매니폴드의 최적형상을 제시하였다. 매니폴드의 형상은 분사균일성을 최대한 유지하면서 분사면 중심의 냉각성능을 높일 수 있어야 한다. 이를 위하여 7가지 후보 형상에 대하여 냉각성능을 비교한 결과 분사기 2-3열과 9-10열 사이에 분리판이 설치된 형상이 최적인 것으로 판단되었다. 분사균일성은 설계원형과 유사한 수준이며 분사면의 최고온도는 27$\%$ 감소하였다. 또한 매니폴드의 형상 변화에 의한 추가적인 압력강하는 거의 없을 것으로 예측되었다.

디젤 인젝터의 분사율 특성에 관한 연구 (A Study on Injection Rate Characteristics of a Diesel Injector)

  • 정재우;김남호;임창현;김덕진
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.217-222
    • /
    • 2015
  • In this study, Injection rate tests of a Diesel common-rail injector have been performed with injection volume measurement type injection rate test system EMI21 for construction of injector model can be used in an engine calibration mean valued model. The measuring principle of the test system is based on measurement of dispalcement of a movable measurement piston by the volume of fluid released by the injector. From these injection rate test results, the characteristics on shape of instantaneous injection rate and injection fuel amount have been investigated and injection fuel amount calculation equation based on test results has been newly constructed. This equation is very simple and calculation error is less than 5% with test results for wide range injection pressure (200~1800 bar) and injection duration ($200{\sim}1800{\mu}s$) conditions. So, it is anticipated that newly constructed simple injection fuel amount model in this study can be efficiently used on engine calibration and control model.

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석 (Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector)

  • 조인수;권지원;이진욱
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성 (The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors)

  • 김원태;강신재;노병준
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성 (Spray Behaviors and Characteristics of Droplet Distribution in GDI injector)

  • 김민규;이창식;이기형;진 다시앙
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.