• Title/Summary/Keyword: Fuel Flow

Search Result 2,589, Processing Time 0.036 seconds

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

CFD Application to Development of Flow Mixing Vane in a Nuclear Fuel Assembly (핵연료다발 유동혼합 날개 개발을 위한 CFD 응용)

  • In, W.K.;Oh, D.S.;Chun, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.482-487
    • /
    • 2001
  • A CFD study was conducted to evaluate the nuclear fuel assembly coolant mixing that is promoted by the flow-mixing vanes on the grid spacer. Four mixing vanes (split vane, swirl vane, twisted vane, hybrid vane) were chosen in this study. A single subchannel of one grid span is modeled using the flow symmetry. The three mixing vanes other than swirl vane generate a large crossflow between the subchannels and a skewed elliptic swirling flow in the subchannel near the grid spacer. The swirl vane induces a circular swirling flow in the subchannel and a negligible crossflow. The split vane and the twisted vane were predicted to result in relatively larger pressure drop across the grid spacer. Since the average turbulent kinetic energy in the subchannel rapidly decreases to a fully developed level downstream of the spacer, turbulent mixing caused by the mixing vanes appears to be not as effective as swirling flow mixing in the subchannel. In summary, the CFD analysis represented the overall characteristics of coolant mixing well in a nuclear fuel assembly with the flow mixing vanes on the grid spacer. The CFD study is therefore quite useful for the development of an advanced flow-mixing vane.

  • PDF

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL (고분자 전해질 연료전지의 매니폴드 설계 및 해석)

  • JUNG Hye-Mi;UM Sukkee;PARK Jungsun;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

로켓엔진용 연료펌프 전산유동해석

  • Noh, Jun-Gu;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.183-190
    • /
    • 2004
  • The performance analysis of a fuel pump for a liquid rocket engine has been performed numerically on its design condition. A commercial three-dimensional Navier-Stokes flow solver has been used for the computation. All of the fuel pump components - inducer, impeller, volute and secondary flow passages - are included in computation for the accurate estimation of the leakage flow rate which affects the performance and axial thrust. A pitchwise-averaged mixing plane method was used on the boundaries among the fuel pump components to save computational time. The predicted overall performance satisfied the design requirement. However, the axial thrust exceeded a permissible limit. In order to reduce the axial thrust, the secondary flow passage design has been changed. With this change, the axial thrust level has been reduced to 30% as compared with the original value.

  • PDF

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Effects of Various Densities and Velocities to Gaseous Hydrocarbon Fuel on Near Nozzle Flow Field in Laminar Coflow Diffusion Flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Choi, Jae Hyuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.291-293
    • /
    • 2015
  • The experimental study on flow characteristic in various laminar coflow diffusion flame has been conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), Ethylene ($C_2H_4$) and n-Butane ($C_4H_{10}$) were used as fuels. Coflow burner and Schlieren technique were used to observe the fuel flow field near nozzle exit and flow characteristics in flames. The result showed that the vortices in n-Butane with density heavier than air were appeared near the nozzle exit with the strong negative buoyancy on the fuel stream. As Reynolds number increases by the control of velocity, the vortices were greater and the vortices tips were moved up from the nozzle exit. In addition, it can be found that the heated nozzle can affect to the flow fields of fuel stream near the nozzle exit.

  • PDF

Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell (고분자전해질형 단위 연료전지의 주요 작동 조건이 공기극 플러딩 현상에 미치는 영향)

  • Min Kyoung-Doug;Kim Han-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.489-495
    • /
    • 2006
  • Proton exchange membrane (PEM) should be sufficiently hydrated with a careful consideration of heat and water management. Water management has been a critical operation issue for better understanding the operation and optimizing the performance of a PEM fuel cell. The flooding on cathode side resulting from excess water can limit the fuel cell performance. In this study, the visual cell was designed and fabricated fur the visualization of liquid water droplet dynamics related to cathode flooding in flow channels. The experiment was carried out to observe the formation, growth and removal of water droplets using CCD imaging system. Effects of operating conditions such as cell temperature, air flow rate and air relative humidity on cathode flooding characteristics were mainly investigated. Based on this study, we can get the basic insight into flooding phenomena and its two-phase flow nature. It is expected that data obtained can be effectively used fur the setup and validation of two-phase PEM fuel cell models considering cathode flooding.

Convergence of Fluid Dynamics and Computer Simulation for the Internal Investigation of Fuel Cell (유체역학과 컴퓨터 시뮬레이션의 융합을 통한 연료전지의 분석)

  • Kim, Se Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.245-251
    • /
    • 2016
  • A numerical model is developed to predict distributions of current density and temperature. Also the complete fuel cell performances were compared. In this study the effect of flow field design and flow direction on current density and temperature distribution as well as full cell performance. The complete three-dimensional Navier-Stokes equations were solved with convergence of electro-chemical reactions terms. In this paper, the two different flow field design were simulated, straight channel and rectangular serpentine flow channel, which is commonly used. The effect of flow direction, co-flow and counter-flow, was also analyzed. The current density and temperature is higher with abundant oxygen not fuel. Also, temperature distribution was able to be drawn by using computer simulation. In this paper, the relationship among flow pattern, flow field design and current denstity distribution.

Estimation of Fuel Consumption using Vehicle Diagnosis Data (차량 진단 정보를 이용한 연료 소모량 추정)

  • Park, Chong-Ryol;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2582-2589
    • /
    • 2011
  • This Paper proposed the prediction method of fuel consumption from vehicle diagnosis informations through OBD-II Interface. We assumed mass air flow (MAF), shor-term fuel trim (STFT), and long-term fuel trim (LTFT) had a relationship with fuel consumption. We got the output as fuel-consumption from MAF, STFT, and LTFT as input variables. We had modelling as combustion reaction equation with OBD-II data and fuel consumption data supported by automotive company in real. In order to verify the effectiveness of proposed method, 5 km real road-test was performed. The results showed that the proposed method can estimate precisely the fuel consumption from vehicle data.