• Title/Summary/Keyword: Fuel Film Formation

Search Result 39, Processing Time 0.023 seconds

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine (직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석)

  • Kim, Man-Shik;Min, Kyoung-Doug;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

Modeling of Spray Impingement and Fuel Film Formation in HSDI Diesel Engines (고속직분식 디젤엔진에서의 분무충돌과 연료액막형성 모델링)

  • Kim, Man-Sik;Min, Gyeong-Deok;Gang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2001
  • Spray impingement and fuel film formation models were developed and incorporated into the computational fluid dynamics code. STAR-CD. The spray/wall interaction process was modeled by considering the change of behaviour with surface temperature conditions and the fuel film formation. We divided the behaviour of fuel droplets after impingement into rebound, spread and splash using the Weber number and the parameter K. The Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, Navier-Stokes and energy equations along the direction of fuel film thickness. Validation of the models was conducted using previous diesel spray experimental data and the present experimental results for the gasoline spray impingement. In all the cases, the prediction compared reasonably well with the experimental results. The spray impingement and fuel film formation models have been applied to the spray/wall impingement in high speed direct injection diesel engines.

Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine (포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구)

  • Lee, Ziyoung;Choi, Jonghui;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

A Study on the Spray and Fuel-Film Formation Mechanism of MPI Injector (다점 분사식 인젝터의 분무 및 벽류 생성 과정에 관한 연구)

  • Lee, K.H.;Lee, C.S.;Kim, B.K.;Sung, B.K.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • Mixture formation is one of the important factors to improve combustion performance of MPI gasoline engines. This is affected by spray and atomization characteristics of injector. Especially, in the case of EGI system, air-fuel mixing period is too short and formed a lot of fuel-film in the intake manifold and cylinder wall. This fuel-film is not burnt in cylinder, it is exhausted in the form of HC emission. In this paper, spray characteristics such as size distributions, SMD, and spray angle are measured by PMAS, and the fuel-film measuring device is developed specially. Using this device, the amount and distribution of fuel-film which flows into through valve can be measured Quantitatively. As the result of these experiments, the information of optimal spray characteristics and injection condition that minimize the fuel-film can be built up.

  • PDF

A Study on the Factors of Fuel-Film Formation in an EGI Gasoline Engine (전자 제어식 가솔린 엔진의 벽류 생성 요인에 관한 연구)

  • Kim, Bong-Gyu;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1530-1537
    • /
    • 1998
  • Mixture formation is one of the significant factors to improve combustion performance of an spark ignition engine. This is affected by spray and atomization characteristics of injector. In the case of EGI system, air-fuel mixing period is so short that a lot of fuel-film and liquid-fuel flow into cylinder. Since this fuel-film is not burnt perfectly in cylinder, it is exhausted in the form of HC emission. In this paper, three measurement techniques were utilized to measure spray characteristics and the amount of fuel-film in the cylinder. At first, PMAS was used to measure the spray characteristics such as size distributions, SMD, and spray angle. Secondly the amount and distribution of fuel-film which flow into through intake valve could be measured quantitatively using the fuel-film measuring device. And lastly, by optical fiber type spark plug used to detect the diffusion flame, the amount of unburned HC was measured. As the result of these experiments, the information of optimal spray characteristics and injection condition to minimize fuel-film could be built up.

A Study on the Visualization Technique for Fuel Behavior and Fuel-Film Formation in the Intake Port of a S.I. Engine (가솔린 엔진 흡기 포트내의 연료 거동 및 벽류 생성 가시화 방법에 관한 연구)

  • Kim, B.G.;Lee, K.H.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.15-21
    • /
    • 1997
  • In a gasoline engine with port injection system, the fuel behavior in the intake port has significant influence on the HC emission and the precise A/F control. That is to say, it is inevitable that the injection direction and behavior of fuel injected in the intake port have an effect on the generation of unburned HC within a cylinder. In this paper, we visualized fuel behavior in the intake port using micro CCD camera synchronized with the stroboscope and investigated the fuel-film characteristics formed at the wall of intake port by processing image captured with VCR in the transparent intake port made of acryl. Using these measuring methods, it was found that fuel behavior and the formation of fuel-film in the intake port could be evaluated qualitatively. And results obtained by these methods show that 2-spray injector minimizes the fuel-film formed in the intake port of a DOHC gasoline engine.

  • PDF

Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine (가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석)

  • Cho, Hoon;Hwang, Seung-Hwan;Lee, Jong-Hwa;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique (레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화)

  • Cho, Hoon;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

Numerical Study on Impingement Process and Fuel Film Formation of GDI Spray according to Wall Geometry under High Ambient Temperature (고온에서 벽면 형상에 따른 GDI 분무의 충돌 과정 및 연료 액막 형성에 대한 수치적 연구)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.166-174
    • /
    • 2008
  • Numerical study on the impingement process and the fuel film formation of the hollow-cone fuel spray was conducted under vaporization condition, and the effect of the wall cavity angle on spray-wall impingement structure was investigated. A detailed understanding of this phenomena will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions of the Gasoline Direct Injection (GDI) engine. The improved Abramzon model was used to model the spray vaporization process and the Gosman model was adopted for modeling of spray-wall impingement process. The calculated results of the spray-wall impingement process were compared with experimental results. The velocity field of the ambient gas, the Sauter Mean Diameter (SMD) and the generated fuel film on the wall, which are difficult to obtain by the experimental method, were also calculated and discussed. It was found that the radial distance after the wall impingement and the SMD decreased with increasing the cavity angle and the temperature.