• 제목/요약/키워드: Fuel Electrode Catalyst

검색결과 165건 처리시간 0.02초

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.

고분자연료전지 내 촉매 이동 및 노화메커니즘에 관한 연구 (A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC)

  • 이윤희;이기석;윤종진;변정연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.256-263
    • /
    • 2012
  • We studied the degradation phenomenon of Pt catalyst in PEMFC. We used the electron microscope analysis technique including the ultra-microtome pretreatment method, FEG-SEM and TEM analysis methods for analysis of Pt nanoparticles. The Pt catalyst degradation is observed not only in electrode site but also in membrane site. We investigated these various degradation phenomena. The cathode electrode layer thickness is reduced. The size of the catalyst is increased much larger than initial size in membrane site. The catalyst moved from electrode layer to the electrolyte membrane. The rounded shape of catalyst was changed to the polygon. As a result, we found that the catalyst degradation processes of migration and coarsening occurred by the followings mechanisms; (1) dissolution of Pt ; (2) diffusion of Pt ion ; (3) Pt ion chemical reduction in membrane; (4) Coarsening of Pt particles (Ostwald ripening) ; (5) polygon shape change of Pt by {111} plane growth.

Preparation and Comparative Test of Polypyrrole Electrodes for Direct Methanol Fuel Cell

  • Park, Jae-Chan;Kim, Jeong-Soo;Jung, Doo-Hwan
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.181-186
    • /
    • 2002
  • The displacement of carbon black to polypyrrole as a catalyst supporter in the fuel electrode of a direct methanol fuel cell was investigated. Polypyrrole was obtained as a black powder by the chemical polymerization of pyrrole with three different oxidants. The synthesized polypyrroles were pasted on carbon paper and transformed to the fuel electrodes with electrochemically deposited platinum. The prepared fuel electrode was assembled and mounted in a unit cell using a membrane and cathodic electrode film. In comparison with the carbon black fuel electrode, the performance of the unit cell was analyzed in relation to the state of the catalyst, the type of oxidant, and the morphology of the polypyrrole powder.

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • 전기화학회지
    • /
    • 제16권1호
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발 (Development of Bifunctional Electrocatalyst for PEM URFC)

  • 임성대;박구곤;손영준;양태현;윤영기;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

촉매 활성층 두께 제어를 통한 연료전지 성능 해석 (Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성 (The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.59-64
    • /
    • 2004
  • 고분자 전해질 연료전지의 성능은 촉매 지지 물질의 특성에 의존한다. 본 연구에서는 백금 촉매의 지지체로서 CNF(carbon nanofibre)와 CNT(carbon nanotube)를 사용하였다. CNF와 CNT는 기상화학증착법과 메카노케미컬 공정에 의해 처리된 촉매를 이용하여 합성되었다. 백금은 고분자 전해질 연료전지의 적용을 위하여 CNF와 CNT로 지지되었다. 그 결과, 65 nm의 직경을 가지는 twisted CNF로 준비된 MEA가 가장 우수한 I-V 특성을 나타내는 것이 확인되었다.

  • PDF

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

촉매조성이 PEM용 연료전지의 전극특성에 미치는 영향 (Influence of the Catalyst Composition on Electrode Performance for Polymer Electrolyte Membrane Fuel Cells)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제9권3호
    • /
    • pp.43-48
    • /
    • 2002
  • 본 연구는 고분자 전해질 연료전지에 이용하기 위한 membrane electrode assembly를 제조하는데 있어서 핵심소재인 고성능 전극촉매를 개발하기 위한 것이다. 전극 성능에 영향을 미치는 촉매 조성물 중 Nafion용액과 백금 함침량을 변화시켜 I-V특성을 측정하였다. 또한, 연료전지의 운전조건 중 단위전지의 온도에 따른 전극 성능의 변화를 관찰하였다. Nafion 용액이 5 wt%, 백금 함침량이 0.5 mg/$\textrm{cm}^2$의 조성이 될 때, 전극 성능이 가장 우수하였다. Nafion용액의 함량이 증가할수록 전극 성능은 저하하였다. 또한, 단위전지는 온도가 $80^{\circ}C$가 되었을 때, I-V 특성이 가장 우수함을 알 수 있었다. 저전류밀도에서의 성능차이는 거의 없으나, 고전류밀도에서는 온도가 상승됨에 따라 전압값이 향상됨을 알 수 있었다.

  • PDF