• Title/Summary/Keyword: Fuel Economy for Diesel

Search Result 110, Processing Time 0.025 seconds

Effects of Regeneration Parameters on Oxidation of Particulate in a Diesel Particulate Trap System (디젤 입자상물질 후처리 장치에서 입자상물질의 연소에 미치는 재생 인자의 영향)

  • Kim, J. U.;Cho, H.;Kim, H. U.;Park, D. S.;You, C.;Kim, E. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.168-177
    • /
    • 1998
  • The effects of the regeneration parameters such as inlet gas temperature, space velocity, oxygen concentration of the exhaust gas, and initial particulate loading on the oxidation of the particulate inside ceramic cordierite filter have been investigated through an engine experiment. As the inlet gas temperature increases, the remarkable filter temperature occurs owing to the rapid combustion rate. Though the higher space velocity affirms the safe regeneration, it also requires much fuel consumption of the burner. For that reason, the space velocity should be compromised considering the fuel economy. The excessive accumulation of the particulate may cause undesirable regeneration temperatures inside filer even under the optimized regeneration condition. The inlet gas temperature should be selected to overcome the variation of the oxygen concentration which is inherent feature of the diesel engine. It is the most important factor in the regeneration control techniques.

  • PDF

Mutagenicity of Diesel Exhaust Emission by Micronucleus Test (디젤엔진 배기물질의 변이원성 연구)

  • 임국환;배은상;김영환;김광종
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 1991
  • Interest in the studies of diesel exhaust emission has been increasing by the expected increase in the use of diesel powered automobiles out of concideration of fuel economy. It was well known that diesel exhaust emission was mutagenic in the bioassay as Ames test. The authors tried to find out the cytogenetic effect of diesel exhaust emission by the operational condition of engine such as speed and load. For the investigation of those effects, 66 male mice of ICR strain were used. The benzene-ethanol extracts of diesel exhaust emission were injected intra peritoneum 25rng/kg and 50mg/kg respectively. To evaluate the cytogenetic effect, mouse bone marrow micronucleus test was carried out. The frequency of micronucleus was different among the various groups according to the operational conditions of engine. The frequency of micronucleus in idling group was the highest of all the groups the subgroup of 50mg/kg showed the rate of 1.30%, 25rng/kg subgroup 0.55%. And the group of 2000rpm with 50% load showed the lowest rate of micronucleus appearance as 0.20% and 0.15%. In general, the frequency of micronucleus was shown higher in propotion to load and was shown inversely proportional to speed.

  • PDF

A Study on the Feasibility of the Three Prospective Types of HEV (국내 보급 예정 하이브리드 자동차의 유형별 편익 고찰)

  • Lee, Dong-Jun;Lee, Ye-Ji;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2008
  • More people have become interested in hybrid vehicles - which have been heralded as environmentally friendly automobiles - recently as the opening of domestic hybrid vehicle market draws near. Since gasoline, diesel and LPG hybrid vehicles will be produced, a need exists to conduct economic feasibility study of each vehicle type. This research analyzed projected benefits of these hybrid vehicles based on the 1600cc model. There are two categories of benefits: 1) reduced fuel costs for the owners of the vehicles; and 2) reduced environmental pollution cost. We conducted a sensitivity analysis and estimated the domestic consumer fuel costs based on the international oil prices of 100USD, 150USD, and 200USD per barrel. The analysis showed savings of 2 to 4 million Won in fuel cost and 1 to 2 million Won in environmental pollution cost; therefore, the hybrid vehicles are not economically feasible if they are between 3 to 5 million Won more expensive than the conventional internal combustion engine vehicles.

  • PDF

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation (Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

A Study on Effect of a Combined Plasma EGR System upon Soot CO and $CO_2$ Emissions in Turbo Intercooler Common-rail Diesel Engines (터보 인터쿨러 커먼레일 디젤기관의 매연, CO 및 $CO_2$ 배출물에 미치는 플라즈마 EGR 조합시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Ku, Young-Jin;Lee, Bong-Sub;Youn, Il-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. In this study, the characteristics of soot, CO and $CO_2$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR and non-thermal plasma reactor system are used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce soot and THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that soot emissions with increasing EGR rate are increased, but are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load. Results also show that CO and $CO_2$ emissions are increased as EGR rate is elevated, and CO emissions are increased, but $CO_2$ emissions are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load.

The Effects of Tunable Helmholtz Resonators on the Volumetric Efficiency in a Multi-cylinder Diesel Engine (가변 헬름홀츠 공진기가 다기통 디젤기관의 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.26-32
    • /
    • 2005
  • The volumetric efficiency is significantly affected by the behavior of pressure wave in induction system and exhaust pipe. By the motion of the piston, there exist pressure fluctuation in induction system which produce waves. Waves are propagated along a pipe bi-directional as they propagated through it, making compression wave and rare-faction(expansion) wave. These wave phenomena can affect to the volumetric efficiency. As a method of improvement of the volumetric efficiency, fuel economy and pollutant emission reduction particularly in low engine speeds, a side-branch additional tunable helmholtz resonator on the secondary pipe of intake system is proposed by use of their acoustic vibrations. Some of results are presented which deal with their physical phenomena for the wave action of intake system in a four-stroke three cylinders diesel engine.

  • PDF

A Study on the Amelioration of Volumetric Efficiency by Variable Induction System in a Diesel Engine (가변 흡기시스템에 의한 디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2006
  • A three-degree of freedom model of intake system was contrived and investigated in various ways for the purpose of the amelioration of the volumetric efficiency in a low and transient engine speed for a multi cylinder diesel engine. The basic concept beyond this model started from the theory that each degree of freedom model has volumetric efficiency peak as many as its number of the degree of freedom. The volumetric efficiency affects significantly to the engine performance; torque characteristics, fuel economy and emission level. For commercial vehicles and stationary engines, the engine is designed so as to produce their best performance near the normal engine speeds, thus the low engine speed area has a tendency of poor volumetric efficiency. The aim of this study was highlighted on the amelioration of volumetric efficiency of low engine speed area in a multi cylinder diesel engine matched with an additional Helmholtz resonator. By the use of VIS(variable induction system) volumetric efficiency at low engine speed range was significantly improved. The availability of control by combination of VIS and CIS(conventional induction system) will be proposed as a variable induction system that would be an appropriate model for amelioration of the volumetric efficiency at low engine speed.

  • PDF

NH3 Generation Characteristics of a LNT Catalyst Downstream (LNT 촉매 후단의 NH3 생성 특성)

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • As diesel engines have high power and good fuel economy on top of less $CO_2$ emissions, their market shares are increasing not only in commercial vehicles but also in passenger cars. LNT, urea-SCR and combination of them have been developed for after-treatment of the exhaust gas to reduce NOx on diesel vehicles. The aim of this study is to investigate the $NH_3$ generation characteristics of LNT catalyst downstream. It was found from the experiments of the LNT catalyst that $H_2$ was useful as a reductant in SCR catalyst because it can enhance the de-NOx performance and improve $NH_3$ selectivity. The $NH_3$ generation of the LNT, when hydrothermally aged at $900^{\circ}C$ for 18 hr, increased to about 90ppm at $300^{\circ}C$ due to Pt sintering and Ba agglomeration. LNT catalyst was most sulfur poisoning at $500^{\circ}C$. The $NH_3$ slip increased due to the reduction of residence time according to SV increase.

An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission (연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Chang-Boke;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

Study on the high efficiency cleaning performance of the diesel vehicle DPF (디젤 자동차용 매연저감장치(DPF)의 클리닝 성능 고도화에 관한 연구)

  • Kim, Hyongjun;Chung, Jaewoo;Kang, Jungho;Lee, Jinwoo;Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Regulations for the exhaust gas of diesel vehicles are being strengthened every year. Recently, diesel emission regulations for HC, CO, NOx, and particulate matter (PM) have been subject to very strict standards. In the future, the regulation of PM is expected to become stricter. Accordingly, diesel particulate filters (DPFs) have been applied to most diesel vehicles for PM reduction. With increasing engine mileage, ash and soot from the engine exhaust gas accumulate inside the DPF. This accumulation can damage the DPF or degrade engine performance. Therefore, efficient cleaning of the DPF is critical for the maintenance of the engine. If the DPF is well managed through regular cleaning, it can improve the power and fuel economy of the engine and reduce maintenance costs. Therefore, this study was performed to develop a high-efficiency cleaning method for DPFs and an apparatus that can more effectively clean out the accumulated ash and soot.