• Title/Summary/Keyword: Fuel Cycle

Search Result 1,786, Processing Time 0.03 seconds

The ROK Nuclear Power Programme -Some Aspects of Radioactive Waste Management in the Nuclear Fuel Cycle-

  • West, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.194-213
    • /
    • 1980
  • The paper describes and quantifies the wastes arising in the nuclear fuel cycle for Light Water Reactors, Heavy Water Reactors and Fast Breeder Reactors. The management and disposal technologies are indicated, together with their environmental impacts. Both once-through and uranium-plutonium recycle systems are evaluated, and comparisons are made on the basis of tingle reference technologies for waste management, and for one gigawatt/year of electricity generation. Environmental impacts are assessed, particularly that of health and safety, and a reference costing system is applied purely as a basis for comparing the fuel cycles. From this study it call be concluded generally that the relative differences of the impacts of waste management and disposal between the selected fuel cycles are not decisive factors in choosing a fuel cycle. Employing the technologies assumed, the radioactive wastes from any of the fuel cycles studied can be managed and disposed of with a high degree of safety and without undue risk to man or the environment. The cost of waste management and disposal is only a few percent of the value of the electricity generated and does not vary greatly between fuel cycles.

  • PDF

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.

An Investigation on Combustion Characteristics of The Closed Cycle Diesel Engine (폐회로 디젤엔진의 연소특성에 관한 고찰)

  • 박신배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.60-69
    • /
    • 2000
  • In order to obtain underwater or underground power sources, the closed cycle diesel engine is operated in the non air-breathing circuit system where the major species of the working fluid include oxygen, argon, and recycled exhaust gas. In the present study, the closed cycle diesel engine is designed to operate at the intake pressure between 2 and 3 bar. For operating in the open-cycle and closed-cycle situations, experimental apparatus using this diesel engine is made with ACAP as data acquisition system. In open, semi-open, and closed cycle modes, the predicted p-$\theta$ and P-V are compared with load bank power. Computation have been performed for wide range of major experimental parameters such as the specific fuel and oxygen concentrations, fuel conversion efficiency and polytropic exponent, IMEP and maximum cylinder pressure.

  • PDF

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

EXTENDED DRY STORAGE OF USED NUCLEAR FUEL: TECHNICAL ISSUES: A USA PERSPECTIVE

  • Mcconnell, Paul;Hanson, Brady;Lee, Moo;Sorenson, Ken
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2011
  • Used nuclear fuel will likely be stored dry for extended periods of time in the USA. Until a final disposition pathway is chosen, the storage periods will almost definitely be longer than were originally intended. The ability of the important-tosafety structures, systems, and components (SSCs) to continue to meet storage and transport safety functions over extended times must be determined. It must be assured that there is no significant degradation of the fuel or dry cask storage systems. Also, it is projected that the maximum discharge burnups of the used nuclear fuel will increase. Thus, it is necessary to obtain data on high burnup fuel to demonstrate that the used nuclear fuel remains intact after extended storage. An evaluation was performed to determine the conditions that may lead to failure of dry storage SSCs. This paper documents the initial technical gap analysis performed to identify data and modeling needs to develop the desired technical bases to ensure the safety functions of dry stored fuel.

Assessment of the material attractiveness and reactivity feedback coefficients of various fuel cycles for the Canadian concept of Super-Critical Water Reactors

  • Ibrahim, Remon;Buijs, Adriaan;Luxat, John
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2660-2669
    • /
    • 2022
  • The attractiveness for weapons usage of the proposed fuel cycle for the PT-SCWR was evaluated in this study using the Figure-of-Merit methodology. It was compared to the attractiveness of other fuel cycles namely, Low Enriched Uranium (LEU), U/Th, Re-enriched Reprocessed Uranium (RepU), and Pu/Th/U. The optimal content of natural uranium, which can be added to Pu/Th to render the produced U-233 unattractive, was found to be 9%. A ranking system to compare the attractiveness of the various fuel cycles is proposed. RepU was found to be the most proliferation resistant fuel cycle for the first 100 years,while, the least proliferation resistant fuel cycle was the originally proposed Pu/Th one. The reactivity feedback coefficients were calculated for all proposed fuel cycles. All studied reactivity coefficients have the same sign implying that all the fuel cycles will behave neutronically in a similar way. The Pu/Th/U fuel was found to have the most negative value of the Coolant Void Reactivity which will help to restore the core to a safe status faster in case of a loss-of-coolant accident. The fuel and moderator temperature coefficients did not show significant differences between the fuels studied.

EUTECTIC(LiCl-KCl) WASTE SALT TREATMENT BY SEQUENCIAL SEPARATION PROCESS

  • Cho, Yung-Zun;Lee, Tae-Kyo;Choi, Jung-Hun;Eun, Hee-Chul;Park, Hwan-Seo;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • The sequential separation process, composed of an oxygen sparging process for separating lanthanides and a zone freezing process for separating Group I and II fission products, was evaluated and tested with a surrogate eutectic waste salt generated from pyroprocessing of used metal nuclear fuel. During the oxygen sparging process, the used lanthanide chlorides (Y, Ce, Pr and Nd) were converted into their sat-insoluble precipitates, over 99.5% at $800^{\circ}C$; however, Group I (Cs) and II (Sr) chlorides were not converted but remained within the eutectic salt bed. In the next process, zone freezing, both precipitation of lanthanide precipitates and concentration of Group I/II elements were preformed. The separation efficiency of Cs and Sr increased with a decrease in the crucible moving speed, and there was little effect of crucible moving speed on the separation efficiency of Cs and Sr in the range of a 3.7 - 4.8 mm/hr. When assuming a 60% eutectic salt reuse rate, over 90% separation efficiency of Cs and Sr is possible, but when increasing the eutectic salt reuse rate to 80%, a separation efficiency of about 82 - 86 % for Cs and Sr was estimated.

Hydrogen and E-Fuel Production via Thermo-chemical Water Splitting Using Solar Energy (국제 공동 연구를 통한 태양에너지 활용 열화학 물분해 그린 수소 생산 연구 및 E-fuel 생산 연구 동향 보고)

  • Hyun-Seok Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • Global sustainable energy needs and carbon neutrality goals make hydrogen a key future energy source. South Korea and Japan lead with proactive hydrogen policies, including South Korea's Hydrogen Law and Japan's strategy updates aiming for a hydrogen-centric society by 2050. A notable advance is the solar thermal chemical water-splitting cycle for green hydrogen production, spotlighted by Korea Institute of Energy Research (KIER) and Niigata University's joint initiative. This method uses solar energy to split water into hydrogen and oxygen, offering a carbon-neutral hydrogen production route. The study focuses on international collaboration in solar energy for thermochemical water-splitting and E-fuel production, highlighting breakthroughs in catalyst and reactor design to enhance solar thermal technology's commercial viability for sustainable fuel production. Collaborations, like ARENA in Australia, target global carbon emission reduction and energy system sustainability, contributing to a cleaner, sustainable energy future.

Assessment of Potential Impacts of the Proposals for Multilateralization of Nuclear Fuel Cycle (핵연료주기 다자화 제안의 잠재적 영향 평가)

  • Moon, Joo-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.339-346
    • /
    • 2010
  • Recently, there have been grave concerns that the anticipated increase in the use of nuclear energy worldwide could result in dissemination of sensitive nuclear technologies. To meet the increase in nuclear energy demand and strengthen the non-proliferation regime simultaneously, the various proposals for 'multilateralization of nuclear fuel cycle' have been widely suggested. Those proposals are expected to have serious impacts on our country, if they has come true. In this paper, therefore, the 12 existing proposals were reviewed and assessed for their potential impacts on our country, in order to help prepare the appropriate measures responding to the international attempt of 'multilateralization of nuclear fuel cycle'.

Fuel Cycle Strategy of Go-ri Nuclear Power Plant - A Statistical Analysis -

  • Chung, Chang-Hyun;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.139-149
    • /
    • 1977
  • An attempt is made to establish an optimum fuel cycle strategy for the Go-ri nuclear power plant units 1 and 2. The total capital required for the fuel cycle operation is selected as a figure of merit for economic comparison of several alternative fuel cycle schemes available for the plant, and evaluated using a probabilistic method coupled with a sampling procedure of the fluctuating fuel cost data. The results are presented in the form of probability histograms. On the basis of the most likely values of the capital requirement obtained from the histograms, a conclusion is drawn that reprocessing cycle with either uranium only or both uranium and plutonium recycled is the most economic choice for the Go-ri plant.

  • PDF