• Title/Summary/Keyword: Fuel Cycle

Search Result 1,786, Processing Time 0.046 seconds

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

Determination of Optimum Batch Size and Fuel Enrichment for OPR1000 NPP Based on Nuclear Fuel Cycle Cost Analysis (OPR1000 발전소의 핵연료 주기비분석을 통한 최적 배취 크기와 핵연료 농축도 결정)

  • Cho, Sung Ju;Hah, Chang Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.256-262
    • /
    • 2014
  • Cycle length of domestic nuclear power plants is determined by the demand-supply plan of utility company. The target cycle length is achieved by adjusting the number of feed fuel assembly and fuel enrichment. Traditionally, utility company first select the number of feed fuel assembly and then find out the fuel enrichment to achieve the special cycle length. But it is difficult to find out if this method is most economical than any other combinations of the enrichment and batch size satisfying the same cycle length. In this paper, core depletion calculation is performed to find out the optimum combination of the enrichment and batch size for given target cycle length in terms of fuel cycle cost using commercial core design code; CASMO/MASTER code. To minimize the uncertainty resulting from transition core analysis, levelized fuel cycle cost analysis was applied to the equilibrium cycle core in order to determine the optimum combination. The sensitivity study of discount rate was also carried out to analyze the levelized fuel cycle cost applicable to countries with different discount rates. From the levelized fuel cycle cost analysis results, the combination with smaller batch size and higher fuel enrichment becomes more economical as the discount rate becomes lower. On the other hand, the combination with higher batch size and lower fuel enrichment becomes more economical as the discount rate becomes higher.

Safety Analyses of Process and Facility for the ACP Demonstration

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Lee, Eun-Pyo;Park, Seong-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.293-294
    • /
    • 2005
  • The safety analyses and evaluation works on the process and facility for ACP demonstration have been performed. The several safety factors, such as the risk, environmental, radiation, structural, criticality, were analyzed. The analysis results confirmed the reliability of the safety on the ACP process and facility during normal and accident conditions.

  • PDF

A Comparative Study on the Proliferation Resistance of Nuclear Fuel Cycles

  • Chang, H.L.;Ko, W.I.;Lee, Y.D.;Lee, K.S.;Kim, H.D.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.53-54
    • /
    • 2009
  • The preliminary quantitative analysis of proliferation resistance for the five nuclear fuel cycles demonstrated that the thermal MOX fuel cycle is most vulnerable to proliferation due to the presence of pure $PuO_2$ in the fuel cycle, while the once-through fuel cycle has the highest proliferation resistance. The innovative next generation fuel cycles such as Pyro-SFR and Wet-SFR were found to have similar levels of proliferation resistance to that of the DUPIC fuel cycle which is believed to have proliferation resistance strong enough for commercial deployment. The sensitivity analysis also demonstrated the effectiveness of the proposed methodology in applying to existing and/or newly developing nuclear fuel cycles so as to improve the proliferation resistance characteristic of the fuel cycle systems.

  • PDF