• Title/Summary/Keyword: Fuel Control

Search Result 2,128, Processing Time 0.031 seconds

Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System (고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석)

  • Yang, Jin-Sik;Song, Tae-Won;Kim, Jae-Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF

Survey on Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차의 에너지 운용전략에 관한 기술조사)

  • Lee, Nam-Su;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.511-513
    • /
    • 2005
  • The fuel cell system has inherent limitation such as slow response time and low fuel economy especially at the low power region, and thus, the battery system has come to be used to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy is essentially required. The work in this paper presents survey on recent power management strategies for fuel cell hybrid electric vehicles. For three power management strategies: basic control method. object function-based control method, and fuzzy logic-based control method. each strategy is reviewed and discussed with other strategy.

  • PDF

Effect of D-Range Neutral Control of Automatic Transmission on LA-4 Mode Fuel Economy (정지구간에서 자동변속기 D단 중립 제어가 LA-4 모드 주행 연비에 미치는 영향)

  • Wi, Hyo-Seong;Jung, Youn-Sik;Park, Jin-Il;Park, Kyoung-Seok;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 2009
  • This paper focuses on vehicle fuel economy improvement using D-Range neutral control of automatic transmission. The system objected to reducing of fuel consumption during idle. Usually, turbine of conventional auto transmission is mechanically linked to wheel during idling condition. Therefore speed ratio of torque converter is zero for that period. This causes needless power loss by the torque converter slip. To improve this inefficiency automobile makers develops electronically-controlled D-range neutral control system. The D-range neutral control system minimizes slip on the torque converter by shifting gear to a neutral position during vehicle stoped with D-range gear position. However there's insufficient study about the effect of D-range neutral control system on vehicle fuel economy. In this paper, researches are performed on effect of D-range neutral control system on vehicle fuel economy by experiment with two different vehicle. And it is also estimated the effect on vehicle fuel economy using computer simulation. As a result, 1.8% of LA-4 mode fuel economy improvement can be achieved in a vehicle by D-range neutral control system.

Implementation of a Fuel Cell Dynamic Simulator

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.336-342
    • /
    • 2007
  • This paper presents the development of a fuel cell dynamic simulator using a programmable DC power supply and LabVIEW graphical user interface. The developed simulator closely describes the static and dynamic characteristics of an actual proton exchange membrance fuel cell (PEMFC). The experimental results are provided to verify the operation of the simulator. The developed simulator can be used as a convenient and economic alternative to an actual fuel cell for developing and testing a fuel cell power conditioning system.

RESEARCH ON ULTRA LOW EMISSION TECHNOLOGY FOR LARGE DISPLACEMENT MOTORCYCLES

  • Kono, T.;Miyata, H.;Uraki, M.;Yamazaki, R.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.277-282
    • /
    • 2006
  • With the aim of achieving half the regulated value of EURO-3 Emission Regulations, an ultra low emission motorcycle has been developed based on a motorcycle with an 1800 $cm^3$, horizontal opposed 6-cylinder engine. For the fuel supply system, an electronically controlled fuel injection system was applied. For the emission purification system, three-way catalysts, a feedback control system with a LAF(Linear Air-Fuel ratio) sensor, and a secondary air induction system were applied. To reduce CO and HC emissions during cold starting, an early catalyst activation method combining RACV(Rotary Air Control Valve) and retarded ignition timing was applied. After the catalyst activation, air-fuel ratio was controlled to maximize the purification ratio of the catalyst according to vehicle speed. For the air-fuel ratio control system, the LAF sensor was used. Furthermore, fine adjustment by the LAF feedback control reduced torque fluctuation due to the air-fuel ratio change. As a result, smooth ride feeling was maintained. Owing to these technologies, half the regulated value of EURO-3 has been achieved without any negative impact to the large-scaled motorcycles' drivability. This paper presents the developed ultra low emission technologies including the control method using an LAF sensor.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Remote control of spent nuclear fuel handling equipment with fuzzy logic (사용후 핵연료 원격 취급 장치의 퍼지 제어)

  • 김기준;김호동;윤완기;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.911-916
    • /
    • 1991
  • Spent nuclear fuel is highly radioactive and requires remote operation due to radiation exposure. Motors which have been used in the highly radioactive environments are a DC type because of their easy implementation on control system. However there are some problems such as mechanical maintenance of brush and commutator, high cost, and heavy material control. AC servo motors are applied and tested on fuzzy and conventional control algorithms. Fuzzy logic controls of AC servo give adequate control accuracy and power for spent fuel handling in radioactive environments.

  • PDF

DC/DC Converter Design for 7kW Fuel Cell (7kW 연료전지용 DC/DC 컨버터 설계)

  • Kim, Ga-In;Shin, Min-Ho;Lee, Jung-Hyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.150-156
    • /
    • 2022
  • This study proposes a design method of fuel cell DC/DC converter using in 5-ton forklift. For efficient hydrogen usage, targeted fuel cell system recirculates discarded hydrogen after fuel cell reaction. Recirculating hydrogen contains much impurities that reduces output power, increasing pressure that can damage the internal fuel cell reaction system. The proposed DC/DC converter effectively converts fuel cell power considering the voltage drop rate to reflect the recirculating hydrogen. Then, frequency control method is used to regulate the current ripple amount for battery and fuel cell hybrid configuration. Proposed power converter system design and control methods are verified in a practical fuel cell system that implements recirculating hydrogen.

A Shared Compliant Control Scheme based on Internal Model Control

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1571-1574
    • /
    • 2003
  • A shared compliant control scheme based on IMC is proposed for the position-force force reflecting control system. The controller of the slave manipulator is designed by IMC method for the open loop unstable plant. The compliant control is implemented by first order low pass filter. In the proposed scheme, the slave manipulator well tracks the position of the master manipulator in free space and the compliance of the slave manipulator is autonomously controlled in contact condition. The simulation results show that the excellence of the proposed controller.

  • PDF

Comparative Study on Power Control Strategies for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차에 대한 에너지 운용전략의 비교 연구)

  • Ki, Young-Hun;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.198-200
    • /
    • 2006
  • In this paper, three types of power control strategies for controlling a Fuel Cell Hybrid Electric Vehicle(FCHEV) are studied in view of fuel economy. The FCHEV has become one of alternatives for future vehicles since it does emit water only without any exhaust gas while it has a high well-to-wheel efficiency together with an energy saving due to regenerative braking. However, it has also several disadvantages such as the complexity of vehicle system, the increased weight and the extra battery cost. Among various power control strategies, a static power control strategy, a power assist control strategy and a fuzzy logic-based power control strategy are simulated and compared to show the effectiveness of each method.

  • PDF