• 제목/요약/키워드: Fuel Consumption Ratio

검색결과 265건 처리시간 0.022초

경운기의 고속 로터리 경운시스템 개발에 관한 연구 (Study on the Development of High-speed Rotary Tilling System for Power Tiller)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF

단면형 로터리경운날의 경운 특성 (Tillage Characteristics of the Single-Edged Rotary Blade)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구 (A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine)

  • 이민호;김정환;송호영;김기호;하종한
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발 (Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment)

  • 표정관;사재환;전의찬
    • 한국기후변화학회지
    • /
    • 제2권3호
    • /
    • pp.143-159
    • /
    • 2011
  • 전력설비의 $SF_6$ 가스 배출저감을 통한 CDM 방법론 AM0035(Approved Methodology 0035. Ver 1.0)를 적용한 사업은 EB(Executive Board) 41차 회의 결과에 따라 $SF_6$ 가스의 운영 상태 및 과정, 불확도를 포함한 베이스 라인, 프로젝트 배출량 산정에 주요 매개변수의 직접 모니터링을 명확하게 입증해야 한다. 본 연구를 통하여 유지보수 시 회수율, 폐기 교체 전 후 가스 순도, 재처리(reclamation) 전 후 $SF_6$ 가스 손실률, 회수 설비 및 재처리 설비의 전력사용량에 의한 배출량, 운반 시 발생되는 누출량(leakage)의 다양한 모니터링 결과를 보수적으로 고려하였다. 그 결과, 기존 방법론보다 베이스 라인 배출량이 감소하고, 프로젝트 배출량이 증가되어 저감량이 감소하는 것을 확인하였다.

한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석 (Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel)

  • 이승록;한희;장윤성;정한섭;이수민;한규성
    • 신재생에너지
    • /
    • 제18권3호
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교 (Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR)

  • 임기훈;박준혁;최영;이선엽;김영민
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.525-531
    • /
    • 2011
  • 디젤엔진에서 배기가스 재순환(EGR; Exhaust Gas Recirculation)은 선택적 환원 촉매나 $NO_x$ 흡장 촉 매에 비해 $NO_x$ 배출 저감을 위한 가장 효과적인 기술이다. 점점 더 강화되어 가는 $NO_x$ 배출 규제를 만족시키기 위해서는 많은 양의 EGR 가스 공급이 필요하다. 저압 EGR은 일정한 과급 압력에서 가변형상 터보차져의 제어와 거의 독립적이기 때문에 EGR 공급 측면에서 보면 저압 EGR이 기존의 고압 EGR에 비해서 더 많은 장점을 갖는다. 본 연구에서는 저압 EGR이 연소 특성에 미치는 영향을 고압 EGR을 적용했을 때와 비교하였다. 각 EGR 루프에 대해 혼합기의 희석 정도에 따른 영향을 분석하기 위해 독립변수로써 희석비를 사용하였다. 저압 EGR을 적용하였을 때, 고압 EGR을 적용했을 때와 동등한 $NO_x$ 배출량을 유지하면서 연료 소비율과 매연 배출은 고압 EGR의 경우보다 좀 더 낮은 결과를 보였다.

LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구 (A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler)

  • 배명환;송병호
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

액체가 채워진 원통형 구조물의 진동 특성 규명을 위한 모달 시험 방법 연구 (Study on Modal Test Method for Vibration Characteristics of the Cylindrical Structure Filled with Liquid)

  • 김근상;김문국;김인걸;박재상;박순홍
    • 한국항공우주학회지
    • /
    • 제46권8호
    • /
    • pp.621-630
    • /
    • 2018
  • 액체 추진 발사체는 발사 후 추진제 소모로 인하여 고유진동수가 변화하는데, 이에 대한 영향을 규명하기 위해서는 모달 시험이 필수적이다. 그러나 액체 추진 발사체는 액체 추진제에 의한 액체의 영향과 발사체 구조의 영향이 복합적으로 작용하여, 이를 규명하는 것은 매우 어렵다. 또한 모달 시험에만 의존하여 복합된 특성을 규명하는 경우, 시험에 소요되는 시간이 과도하게 증가하고 특정 모드와 특정 주파수의 판별 및 확인이 쉽지 않다. 본 논문에서는 이러한 단점을 보완하기 위해 유한요소 해석 결과를 이용한 모달 시험 방법을 제안하였다. 액체가 채워진 원통형 구조물을 연구 모델로 선정하여 모달 시험과 유한요소 해석을 수행하였다. 모달 시험은 충격 가진 방식으로 충격망치와 가속도계를 이용하여 수행하였다. 모달 시험과 유한요소 해석 결과 비교를 통해 제안한 유한요소 해석 결과를 이용한 모달 시험 방법의 타당성을 검증하였으며, 액체가 채워진 비율에 따른 원통형 구조물의 자유진동 특성과 그 경향성에 대해 고찰하였다.

고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구 (Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle)

  • 김보성;박정규;윤승현;조수영;하주형;박규성;이근호;원성홍;문창모;조진수
    • 한국항공우주학회지
    • /
    • 제43권12호
    • /
    • pp.1097-1107
    • /
    • 2015
  • 일반적인 수직이착륙 항공기는 높은 출력대 중량비의 가스터빈엔진을 사용한다. 그러나 높은 연료 소모율로 인해 소형 항공기에는 적합하지 않다. 본 연구에서는 직렬 하이브리드-전기 추진시스템을 대안으로 제안하였으며, 시스템을 구성할 소형엔진과 전기모터, 배터리에 대한 기술조사 비교분석을 수행하였다. 연구를 위한 고정익 수직이착륙 무인항공기로 I사(社)의 65 kg급 수직이착륙 P-무인기를 사용하였다. 개발한 발전제어 및 전력제어 알고리즘의 타당성과 항속시간을 예측하기 위해 Matlab/simulink$^{(R)}$를 이용한 시뮬레이션을 수행하였다. 그 결과 알고리즘이 비교적 잘 작동하는 것을 확인하였고, 직렬 하이브리드-전기 시스템이 임무형상을 만족하는 7시간의 항속시간을 충분히 만족 할 수 있을 것으로 예측하였다.