• Title/Summary/Keyword: Fuel Consumption Model

Search Result 238, Processing Time 0.022 seconds

The Research about Map Model of 3D Road Network for Low-carbon Freight Transportation (저탄소 화물운송체계 구현을 위한 3차원 도로망도 모델에 관한 연구)

  • Lee, Sang-Hoon
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • The low-carbon freight transportation system was introduced due to increase traffic congestion cost and carbon-dioxide for global climate change according to expanding city logistics demands. It is necessary to create 3D-based road network map for representing realistic road geometry with consideration of fuel consumption and carbon emissions. This study propose that 3D road network model expressed to realistic topography and road structure within trunk road for intercity freight through overlaying 2D-based transport-related thematic map and 1m-resolution DEM. The 3D-based road network map for the experimental road sections(Pyeongtaek harbor-Uiwang IC) was verified by GPS/INS survey and fuel consumption simulation. The results corresponded to effectively reflect realistic road geometry (RMSE=0.87m) except some complex structure such as overpass, and also actual fuel consumption. We expect that Green-based freight route planning and navigation system reflected on 3D geometry of complex road structure will be developed for effectively resolving energy and environmental problems.

Construction Equipment Fleet Optimization for Saving Fuel Consumption (에너지 절감을 위한 건설장비 조합 최적화 방법 연구)

  • Yi, Chang-Yong;Lee, Hong-Chul;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF

Estimation of Discretionary Fuel for Airline Operations

  • Chang, Hyoseok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • Fuel costs represent one of the most substantial expenses for airlines, accounting for 20% - 36% of the airline's total operating cost. The present study discusses the so-called discretionary fuel that is additionally loaded at the discretion of airlines to cover unforeseen variations from the planned flight operations. The proper range of the discretionary fuel to be loaded for economic flight operations was estimated by applying Monte Carlo simulation technique. With this simulation model for loading discretionary fuel, airlines cannot only reduce the total amount of fuel to be consumed but also minimize the risk of unplanned flight disruptions caused by insufficient fuel on board. Airlines should be able to guarantee proper risk management processes for fuel boarding by carrying enough fuel to high-risk airports. This study would provide a practical guideline for loading proper amounts of discretionary fuel. Future researchers should be encouraged to improve this study by elaborating the weather variable.

Comparison of Different Policy Measures for Fostering Climate Friendly Fuel Technology Applying a Computable General Equilibrium Model (기후친화적 연료 생산 확대를 위한 정책 수단간 일반균형효과의 비교)

  • Bae, Jeong-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.19 no.3
    • /
    • pp.509-546
    • /
    • 2010
  • Although coal has been utilized as major fuel, it is known as 'most climate unfriendly' fuel. Carbon tax or tradable permit policy has been discussed as major measure for reducing production and consumption of coal, but it might be more efficient to remove subsidy on coal production and consumption. This study examines economic and environmental effects of recycling revenue from reducing subsidy on the use of coal to foster climate friendly fuel (ligneous biomass) by price subsidy or increased public expenditure. A static CGE model was applied to analyze the welfare consequences and economic impacts of two policy measures. The result shows that price subsidy policy is more desirable than creation of public demand in terms of welfare as well as overall economic impacts.

  • PDF

CFD Simulation Tool for Anode-Supported Flat-Tube Solid Oxide Fuel Cell

  • Youssef M. Elsayed.;Lim, Tak-Hyoung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.151-157
    • /
    • 2006
  • A two-dimensional numerical model to study the performance of anode-supported flat-tube solid oxide fuel cell (SOFC) far the cross section of the cell in the flow direction of the fuel and air flows is developed. In this model a mass and charge balance, Maxwell-Stefan equation as well as the momentum equation by using, Darcy's law are applied in differential form. The finite element method using FEMLAB commercial software is used for meshing, discritization and solving the system of coupled differential equations. The current density distribution and fuel consumption as well as water production are analyzed. Experimental data is used to verify a predicted voltage-current density and power density versus current density to judge on the model accuracy.

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

Effects of Inflation Indexed Excise Duties on Transportation Fuel Consumption Using Demand Analysis based on the Linear Expenditure System in Korea (선형지출체계 수요함수 추정을 통한 수송용 유류 종량세의 물가연동제 도입효과 분석)

  • Sung, Myung Jae
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.257-286
    • /
    • 2017
  • This paper estimates the effects of imaginary repeated increases in excise duties on fuel oil consumption and on their income redistribution according to changes in consumer price index, if the inflation indexation system was introduced right after the second Energy Tax Reform ended in July, 2007 in Korea. In fact, nominal excise rates have not been adjusted since 2007. As a result, the real excise rates on fuel oils have been diminished inversely proportional to the consumer price index. Own- and cross-price elasticities of fuel oils such as gasoline and diesel oil are estimated under the general equilibrium framework based on the linear expenditure system. Counterfactual analyses through microsimulation in a static model are adopted to estimate the effects of introducing inflation indexation into the fuel tax in 2007 when the second Energy Tax reform ended on the fuel consumption and income redistribution in 2014. Microsimulations suggest that its introduction could have reduced the consumption of gasoline and diesel oil by 8.8% and 5.4%, respectively, ending up with increased excise revenue by 11.9%. The revenue increase in spite of decreased consumption is mainly because their demands are price inelastic. It could also have increased positive income redistributive effect by 0.01%p (from 0.12% to 0.13%), which is measured in terms of percentage decrease in Gini coefficient. In other words, the fuel excise on the two fuel oils decreased by 0.13% the Gini coefficient of before and after fuel tax income in 2014. This implies that the inflation indexation could have enlarged the income redistributive effect up to 0.13% in 2014, if it is introduced in 2007.

A Study on the Variation of Air Pollutants Emission Rates for Different Traffic Signal System in Metropolitan Area (대도시 교통신호시스템에 따른 대기오염물질 배출량 변화에 관한 연구)

  • 홍민선;우완기;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1993
  • This study was carried out to investigate the relationship between the traffic signal systmes and the air pollutants emitted by the motor vehicles at Kangnam Intersection. One of the most important measures of effectiveness (MOE) in traffic studies is the delay to vehicles in the system. Delay represents indirect costs to the motorist in terms of time loss and a direct cost in terms of fuel consumption during idling. The results of TRANSYT-7F modeling was correlated among delay, fuel consumption and total travel tiem. Air pollutants emission rate can be calculated by the results of modeling and the Korean type emission factor. As expected the highest emissions, for air pollutants, are observed during the morning rush hours (07 : 00-10 : 00). For better results of modeling, the TRANSYT-7F model needs to modify for the Korean type of traffic model. The results of this study indicate that the variation of air pollutants emission rates were closely related to the traffic signal system.

  • PDF