• Title/Summary/Keyword: Fuel Cell system

Search Result 1,366, Processing Time 0.026 seconds

In-Flight and Numerical Drag Prediction of a Small Electric Aerial Vehicle (비행시험과 전산해석을 통한 소형무인기 항력 예측)

  • Jin, Won-Jin;Lee, Yung-Gyo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • This paper presents the procedure of drag prediction for EAV-1, based on a numerical analysis correlated to an in-flight test. EAV-1, developed by Korea Aerospace Research Institute, is a small-sized UAV to test a hydrogen-fuel cell power system. The long-endurance test flight of 4.5 hours provides numerous in-flight data. The thrust and drag of EAV-1 during the flight test are estimated based on the wind-tunnel test results for EAV-1's propeller performance. In addition, the CFD analysis using a commercial Navier-Stokes code is carried out for the full-scale EAV-1. The computational result suggests that the initial CFD analysis substantially under-predicts the in-flight drag in that the discrepancy is up to 27.6%. Therefore, additional investigation for more accurate drag prediction is performed; the effect of propeller slipstream is included in the CFD analysis through "fan disk" modelling. Also, the additional drag from airplane trim and load factor that actually exists during the flight test in a circular path is considered. These supplemental analyses for drag prediction turn out to be effective since the drag discrepancy reduces to 2.3%.

Study on the effect of morphology and microstructure of photocatalyst in photo/biocatalytic hydrogen production system (광바이오촉매 수소제조 시스템에의 광촉매 형태 및 미세구조의 영향에 관한 연구)

  • Lee, Sang-Bong;Shul, Yong-Gun;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 2005
  • 이 연구는 광화학적 물분해 수소제소 기술의 일환으로 수행 중인 광촉매와 바이오촉매를 복합한 시스템 활용 기술에서 광촉매가 갖는 물리적 특성의 영향을 파악하고자 진행되었다. 다양한 물리적 특성을 갖는 광촉매 얻기 위하여 상용광촉매, 수열화법(HT-TiON), 리고 저온합성법(LT-TiON) 등을 이용하여 샘플을 준비하였다. 가시광 감응을 위하여 암모니아나 triethylamine 처리를 하여 질소를 도핑도 시도하였다. 시도된 복합시스템은 인위적인 전자주개 없이 수소를 발생시키는 결과를 보여주었으나, 광촉매로부터 엔자임으로의 전자전달 부분이 율속단계로 확인되었다. 사용된 광촉매 샘플에 따라 수소발생량에 차이가 나타난 결과로 광촉매의 미세구조 (결정상, 결정도, 기공 크기 및 비표면적 등)이 중요한 역할을 하는 것으로 판단되었다. 얻어진 결과들을 활용하여 재료들이 고정화된 새로운 시스템 구성을 제안하였다.

Evaluation on Light Scattering Behavior of a Pulverized Coal Suspension (슬러리내 석탄입자의 광산란 특성 평가)

  • Hwang, Munkyeong;Nam, Hyunsoo;Kim, Kyubo;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.451-460
    • /
    • 2013
  • In a direct coal fuel cell (DCFC) system, it is essential to identify volume fraction of coal suspended in electrolyte melt in order to control its dispersion and fluidity. This requirement is compelling especially at anode channel where hot slurry is likely to flow at low velocity. In this study, light scattering techniques were employed to measure the volume fraction for a pulverized coal suspension with relatively high absorption coefficient. The particle size, scattering angle, and volume fraction were varied to evaluate their effects on the scattering behavior as well as scattering regime. The larger coal size and smaller forward scattering angle could provide a shift to more favorable scattering regime, i.e., independent scattering, where interferences of light scattering from one particle with others are suppressed.

Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner (광 픽업 방식 형광스캐너를 이용한 미소유체 특성 분석)

  • Yim, Vit;Kim, Jae-Hyun;Lee, Seung-Yop;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1102-1106
    • /
    • 2008
  • Microfluidics deals with the behavior, precise control and manipulation of fluids at a micro scale. It has become increasingly prevalent in various applications such as biomedical applications (diagnostics, therapeutics, and cell/tissue engineering), inkjet head, and fuel cells etc. The issue of inspection and characterization of microfluidics has emerged as a major consideration in design, fabrication, and detection of microfluidic devices. In this paper, we characterize a diffusion based mixing in Y-microchannel using a fluorescent optical scanner based on a DVD pick-up module, which is widely used in optical storages. Using fluorescent dye, we measure the fluorescent intensity that represents the mixing patterns in Y-microchannel. We also compare these experimental results with computational fluid dynamics (CFD) simulation ones. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and cost-effectiveness, compared to conventional optical tools such as epifluorescent microscopes using high resolution CCD camera and confocal microscopes with photomultiplier (PMT) detectors.

Phase Transition and ionic Conductivity of Cesium Hydrogen Sulfate-PAN Composites (황산수소 세슘-PAN 복합체의 상전이와 이온 전도성)

  • 최병구;박상희
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • The cesium hydrogen sulfate (CsHSO$_4$) crystal is a superprotonic conductor above 140$^{\circ}C$ and possesses protonic conductivity three to low orders of magnitude higher than that at room temperature. Recently, the possibility of it as an electrolyte material for fuel cell system draws much attention. However, its plasticity and absorption of humidity place a limitation on its application. In this study, composites consisting of CsHSO$_4$ and polyacrylonitrile were prepared, and their phase transition properties and the ionic conductivities were evaluated. When the content of CsHSO$_4$ was about 80 vol%, a mechanically strong film with the protonic conductivity of 1${\times}$10$\^$-3/ Scm$\^$-1/ were made.

A Study of the Electric Vehicle Industry and Policy Implications (전기자동차 산업 현황 및 정책적 대응방향)

  • Chun, Hwang-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.471-473
    • /
    • 2013
  • This paper is analyzing the situation of the electric vehicle Industry and draw the policy implications to promote electric vehicle industry. Major automobile makers as GM, BMW, Nissan, Audi produce various electric vehicles. But in recent times, only few electric vehicle sold in the world. So, many automobile makers gave up the production of electric vehicles. and the fuel-cell vehicle will replace the electric vehicle as a environment car in the future. We should take the build up of eco system between vehicle makers and the small parts companies, construction of battery charging infrastructure, promotion of standardization activities, and the government's support to revive the electric vehicle industry.

  • PDF

Performance Enhancement of 20kW Regenerative Blower Using Design Parameters

  • Jang, Choon-Man;Jeon, Hyun-Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.86-93
    • /
    • 2014
  • This paper describes performance enhancement of a regenerative blower used for a 20 kW fuel cell system. Two design variables, bending angle of an impeller and blade thickness of an impeller tip, which are used to define an impeller shape, are introduced to enhance the blower performance. Internal flow of the regenerative blower has been analyzed with three-dimensional Navier-Stokes equations to obtain the blower performance. General analysis code, CFX, is introduced in the present work. SST turbulence model is employed to estimate the eddy viscosity. Throughout the numerical analysis, it is found that the thickness of impeller tip is effective to increase the blower efficiency in the present blower. Pressure is successfully increased up to 2.8% compared to the reference blower at the design flow condition. And efficiency is also enhanced up to 2.98 % compared to the reference one. It is noted that low velocity region disturbs to make strong recirculation flow inside the blade passages, thus increases local pressure loss. Detailed flow field inside the regenerative blower is also analyzed and compared.

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.

Understanding and Their Application of GoldSim Transport Pathways to Mass Trasport Simulation (질량 이동 모사 프로그램 개발을 위한 골드심 이동 패쓰웨이의 이해와 활용)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.135-151
    • /
    • 2014
  • It is very important to properly understand such "Transport Pathways" elements as "Pipe" and "Cell" pathways in commercial GoldSim Transport Module (GTM) for developing higer quality models and programs for performance assessment of complex radioactive waste repositories. With an illustrative case under an earthquake scenario, by which an increasement in the groundwater flow rate occurs though the geological medium, ways of avoiding possible modeling errors in the nuclide transport modeling in the radioactive waste repository system for its safety assessment by utilizing such pathways are discussed and a proper usage of the pathways is proposed.

A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating (전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.