• Title/Summary/Keyword: Fuel Cell Stack

Search Result 487, Processing Time 0.03 seconds

Development of the Low Cost Impedance Spectroscopy System for Modeling the Electrochemical Power Sources (전기화학적 전력 기기의 모델링을 위한 저가의 임피던스 분광 시스템의 개발)

  • Lee, Ju-Hyung;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2008
  • In this paper, a low-cost impedance spectroscopy system(LCISS) suitable for modeling the electrochemical power sources such as fuel cells, batteries and supercapacitors is designed and implemented. Since the developed LCISS is composed of simple sensor circuits, commercial data acquisition board and LabVIEW software, a graphic language with powerful HMI(Human-Machine Interface), it is expected ta be widely used in substitution of the expensive EIS instruments. In the proposed system, the digital lock-in amplifier is adopted to achieve the accurate measurements even in the presence of the high level of noises. The developed hardware and software is applied to measure the impedance spectrum of the Ballard Nexa 1.2kW proton exchange membrane fuel cell stack and an equivalent impedance model is proposed based on the measurement results. The validity of the proposed equivalent circuit and the developed system is proven by the measurement of the ac power losses of the PEM fuel celt stack by the ripple current.

Humidification Reduction Study in Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지의 가습 저감방안 연구)

  • Kim Junbom;Lee Heungjoo;Kwon Juntaek;Kim Kwanghyun;Song Hyundo;Han Jaejin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.239-242
    • /
    • 2005
  • 고분자 전해질형 연료전지에서는 수소이온의 이온전도성 저하를 방지하기 위하여 외부에서 가습하여 주는 방식이 일반적이지만, 가습에 소요되는 부품을 일부라도 제거할 경우 연료전지의 효율은 높이고 제작단가도 경감할 수 있다. 이를 위하여 저가습 및 무가습 실험을 수행하였으며, 정확한 data의 수집과 시험장비의 자동제어를 위하여 National Instrument사의 compact field point (cFP)를 사용하였다. 무가습 실험 중 stack의 안정성 측면을 고려하기 위하여 수소연료가 부족하거나 갑작스런 voltage drop이 발생할 경우 LabVIEW logic에 의한 stack 보호용 자동차단 시스템을 구현하였다. Humidifier와 heater의 온도를 조절하여 공급유체의 상대습도 및 온도를 각각 조절하였으며, 이에 필요한 이론적 온도는 Antoine equation을 사용하여 산정하였다. Anode와 cathode 양측 $100\%$ 가습 경우를 기준으로 가습량을 조절하면서 실험을 수행하였으며 성능 차이를 그래프로 도시하여 양측의 변화에 대한 영향을 볼 수 있도록 하였다. Stack의 온도가 $70^{\circ}C$이고 양측 무가습일 경우에 성능 측정이 불가능하여 stack의 온도를 저온에서부터 변화시키면서 무가습 성능을 실시간으로 측정하여 보았다 일반적으로 hydronium ion은 anode측에서 cathode측으로 계속 이동하여야 전기를 생성할 수 있으므로 cathode측 무가습이 anode측 무가습보다 성능이 더 잘 나오는 것으로 예측하였으나 이와 반대되는 경향의 실험 결과를 얻었다. Anode측 무가습과 cathode측 무가습의 standard deviation은 anode 무가습일 경우가 크게 발생하였고 양측 무가습일 경우는 stack의 온도가 높을수록 크게 관찰되었다. 이와 같은 현상은 공기중의 상대습도와 back diffusion등에 영향을 받을 수 있으므로 각종 변수들의 영향을 분리하여 관찰할 수 있는 실험을 수행중에 있다.

  • PDF

Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell (인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향)

  • 윤기현;최재열;장재혁;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF

A Study on the Start-up and Shut-down Characteristics for PEMFC System (고분자 연료전지시스템의 기동 및 정지특성에 관한 연구)

  • Lee, Jung-Woon;Seo, Won-Seok;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.29-32
    • /
    • 2008
  • Testing was conducted to determine the performance of a residential fuel cell system when subjected to DSS and WSS operation, especially for start-up and shut-down characteristics. In terms of start-up time, it took about 70min to start output power generation and stably to reach 1kW at cold start. Measurement of the characteristics of heat and power generation were carried out at start-up and shut-down time. Fuel gas is used for heating both reformer and stack from start-up to the beginning of power generation. In terms of start-up and shut-down characteristics, it was important to control the reformer temperature precisely. The average output water temperature during the rated output operation(960W) was $63.2^{\circ}C$ constantly. The results of the investigation are being used to develop a new test protocols for residential fuel cell system.

  • PDF

Transient Characteristics of Fuel Cell Stack at Continuous Current Discharge (일정 전류에서 연료전지의 비정상 특성)

  • Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.195-206
    • /
    • 2003
  • Polymer electrolyte membrane fuel cells(PEMFC) are very interesting power source due to high power density, simple construction and operation at low temperature. But they have problems such as high cost, improvement of performance and effect of temperature. This problems can be approached using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management, in this paper, transient model consists of various energy terms associated with fuel cell operation using the mass and energy balance equation. And water transfer in the membrane is composed of back diffusion and electro-osmotic drag. The temperature calculated by transient model approximately agreed with the temperature measured by experiment in constant current condition.

Fabrication of Small SOFC Stack Based on Anode-Supported Unit Cells and Its Power Generating Characteristics (음극지지형 단전지를 사용한 소형 SOFC 스택의 제조 및 출력특성)

  • Jung, Hwa-Young;Kim, Woo-Sik;Choi, Sun-Hee;Kim, Joosun;Lee, Hae-Weon;Ko, Haengjin;Lee, Ki-Chun;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.777-782
    • /
    • 2004
  • In this research, $5\times5cm^2$ unit cells were fabricated via liquid condensation process and uniaxial pressing followed by the screen printing of electrolyte and cathode layer. The SOFC stack was assembled with unit cells, gasket-type sealant and metal interconnect. The stack was designed to have a single column with internal-manifold and cross-flow type gas-channels. The SOFC stack produced 15 W, which is $50\%$ of the maximum power being expected from the maximum power density of the unit cell. Controlling factors for the proper operation of the SOFC stack and other designing factors of stack manifold and gas channels were discussed.

The Notch Filter Design for Mitigation Current Ripple of Fuel cell-PCS (연료전지용 PCS의 출력 전류 리플 개선을 위한 노치 필터 설계)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • As a fuel cell converts the chemical energy of the fuel cell into electrical energy by electrochemical reaction, the fuel cell system is uniquely integrated technique including fuel processor, fuel cell stack, power conditioning system. The residential fuel cell-PCS(Power Conditioning System) needs to convert efficiently the DC current produced by the fuel cell into AC current using single-phase DC-AC inverter. A single-phase DC-AC inverter has naturally low frequency ripple which is twice frequency of the output current. This low frequency(120Hz) ripple reduces the efficiency of the fuel cell. This paper presents notch filter with IP voltage controller to reject specific 120Hz current ripple in single-phase inverter. The notch filter is designed that suppress just only specific frequency component and no phase delay. Finally, the proposed notch filter design method has been verified with computer simulation and experimentation.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

The development of High efficiency fuel processor for technical independence 5kW class fuel cell system (기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발)

  • Lee, Soojae;Choi, Daehyun;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF

Effect to Fillers for FKM (Fluorocarbon rubber) Gasket in Fuel Cell Stack (연료전지 스택 가스켓용 불소고무에 있어 충전제 종류에 따른 영향)

  • Hur, Byung-ki;Kang, Dong-gug;Yoo, Il-hyuk;Lee, Dong-won;Seo, Kwan-ho;Park, Lee-soon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The rubber was compounded with carbon black and silica series-filler to examine the effects of the various rubber fillers on a gasket material's suitability and fuel cell stack conclusion. The evaluation of a long term heat resistance and oil resistance of the mixed rubber material was performed considering at the drive environment of PEMFC. Test results of compression set for the most influencing property of gasket showed that it was about less than 15% at long term of up to 1000 h. In this experiment, FEM analysis is carried out about the rubber material's properties depending on each filler and the stress which is produced when a gasket is contracted by using various filler. Sealing force was expected to maximum 2.5 MPa from minimum 0.2 MPa by using FEM (finite element method) at stacking gasket to gasket.