• Title/Summary/Keyword: Fuel Cell Simulator

Search Result 66, Processing Time 0.025 seconds

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Implementation of a CAN Based Real-Time Simulator for FCHEV (하이브리드 연료전지 자동차의 CAN기반 실시간 시뮬레이터 구현)

  • Shim, Seong-Yong;Lee, Nam-Su;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.410-413
    • /
    • 2004
  • In this paper, a simulator system for Fuel Cell Hybrid Electric Vehicles(FCHEV) is implemented using DSP boards with CAN bus. The subsystems of a FCHEV i.e., the fuel cell system, the battery system, the vehicle dynamics with the transmission mechanism are coded into 3 DSP boards. The power distribution control algorithm and battery SOC control are also coded into a DSP board. The real-time monitoring program is also developed to examine the control performance of power control and SOC control algorithms.

  • PDF

Development of the 1kW Class Regenerative Fuel Cell for Ground Simulator of Regeneration Electric Power System (재생전원 시스템의 지상 시뮬레이터용 1kW급 재생형 연료전지 개발)

  • Kim, Hyung-Mo;Yang, Cheol-Nam;Hong, Byung-Sun;Park, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1117-1122
    • /
    • 2006
  • The PEM type regenerative fuel cell(RFC) for the ground simulator of the regeneration electric power system has been designed, manufactured, and tested. In this paper, the designing and manufacturing procedures of the RFC were presented. Also, the performance test results were showed briefly. The RFC consists of PEM type stack, humidifier, pressure and flow control valve, storage tanks, pump and controller. The performance tests were carried out with stack and system performance tests. The performance targets are more than 50% stack efficiency, 1.5kW stack power, less 400W parasitic power in design condition. Most of the performances required are satisfied.

Polymer Electrolyte Fuel Cell Simulation Using Simulink (Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션)

  • Hwang, Nam-Sun;Lee, Ho-Jun;Ju, Byung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

A graphic Simulator of Manipulators for Remote Maintenance (원격유지보수용 조작기 시뮬레이터 개발)

  • 이종열;김성현;송태길;박병석;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.772-775
    • /
    • 2002
  • The remote handling and maintenance devices in the nuclear hot ceil should be checked prior to the hot operation in view of reliability and operability. In this study, the digital mock-up is implemented to analyze and define the process equipment maintenance processes instead of real mock-up, which is very expensive and time consuming. To do this, the parts of equipment and maintenance devices are modeled in 3-D graphics, assembled, and kinematics is assigned. Also, the virtual workcell of the spent fuel management process is implemented in the graphical environment which is the same as the real environment. This simulator has the several functions for verification such as analyses for the manipulator's working area, the collision detection, the path planning and graphic simulation of the processes etc. This graphic simulator of the maintenance devices can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

Graphic Simulator of the Mechanical Master-Slave Manipulator (기계식 Master-Slave 조작기의 그래픽 시뮬레이터)

  • 이종열;송태길;김성현;홍동희;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.743-746
    • /
    • 1997
  • The Master-Slave manipulator is the generally used remote handling equipment in the hot cell, in which the high level radioactive materials such as spent fuels are handled. To analyze the motion and to implement the training system by virtual reality technology, the simulator for M-S manipulator using the computer graphics is developed. The parts are modelled in 3-D graphics, assembled, and kinematics are assigned. The inverse kinematics of the manipulator is defined, and the slave of manipulator is coupled with master by the manipulator's specification. Also, the virtual workcell is implemented in the graphical environment which is the same as the real environment. This graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

Development of Hardware Simulator for Operation Analysis of DC Microgrid (DC 마이크로그리드의 동작분석을 위한 하드웨어 시뮬레이터 개발)

  • Lee, Ji-Heon;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.251-252
    • /
    • 2011
  • This paper describes the development of hardware simulator for the operation analysis of DC microgrid, which has a wind power, solar power and fuel cell as a distributed generation, and a supercapacitor and battery as an energy storage. A detailed simulation model for the DC microgrid was developed for operation analysis. Based on simulation results a hardware simulator was built in the lab for the purpose of operation analysis. The developed hardware simulator can be utilized to evaluate with practical manner the performance of actual microgrid in the field.

  • PDF