• 제목/요약/키워드: Fuel Cell Model

검색결과 441건 처리시간 0.025초

연료전지 스택의 기밀성 향상을 위한 가스켓 모델링과 해석 기법 (Numerical Modeling of Fuel Cell Gasket for Sealing Performance)

  • 김헌영;김정민;김대영;서정도;양유창;임철호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.97-100
    • /
    • 2007
  • Fuel Cell Stack performance, which is influenced by the maintenance of a constant internal environment, requires high levels of air tightness. Used for analysis, gasket for fuel cell is made of elastic rubber materials and placed over separator, and shape of deformation of a gasket affects the transformation separator and airtightness while fastening structure. Separator as made of steel sheet isn't broken under pressure but can affect gas and cool water flow by the plastic deformation process. Therefore, it is understood that assembly process is well developed in case distribution of stress and shape of deformation is shown uniformly. This study is conducted on the assumption that a fuel cell maintenance is advantageous in that conditions. In this paper, analyses of unit cell and partial model were performed and distribution of stress and shape of deformation of Gasket and separator were analyzed to evaluate the airtightness while fastening structure.

  • PDF

액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구 (A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems)

  • 곽건희;고요한;이수원;이진우;백동현;정두환;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.

연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구 (Numerical Simulation on Cooling Plates in a Fuel Cell)

  • 김윤호;이용택;이규정;김용찬;최종민;고장면
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석 (Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell)

  • 김종민;강경식
    • 대한안전경영과학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.

고분자 전해질형 연료전지 발전 시스템의 전산모사 (Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell)

  • 백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.

Modelling of the Electrochemical Performance of Functionally Graded Fuel Cell Electrodes by Discrete Simulations

  • Schneider, L.C.R.;Martin, C.L.;Bultel, Y.;Kapelski, G.;Bouvard, D.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.916-917
    • /
    • 2006
  • Solid Oxide Fuel Cell technology uses powder processes to produce electrodes with residual porosity by partially sintering a mixture of electronically and ionically conducting particles. We model porous fuel cell electrodes with 3D packings of monosized spherical particles. These packings are created by numerical sintering. Each particle-particle contact is characteristic for an ionic, electronic or electrochemical resistance. The numerical packing is then discretized into a resistor network which is solved by using Kirchhoff's current law to evaluate the electrode's electrochemical performance. We investigate in particular percolation effects in functionally graded electrodes as compared to other types of electrodes.

  • PDF

고분자막전해질 연료전지의 열관리 (Thermal Management of Proton Exchange Membrane Fuel Cell)

  • 유상석;김한석;이상민;이영덕;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.292-300
    • /
    • 2007
  • A dynamic system model of a proton exchange membrane fuel cell(PEMFC) has been developed. The PEMFC of this study has large active area with water cooling in order to simulate the performance of the commercially viable PEMFC system for the transportation. A PEMFC stack model is a transient thermal model which is respond to the dynamic change of the coolant temperature and the flow rate. The dynamic cooling system model has been developed to determine the coolant flow rate and the coolant temperature. Prior to the system level study, thermal management criteria have been set up and brought to the control command of the cooling system. Since the system model is designed to evaluate the effect of thermal management on the system performance, it is attempted to determine the proper control algorithm of the cooling system so that the PEMFC system is working on the thermal management criteria. As a result of simulation, feedback controlled cooling system consumes less power and produce more power comparing with that of conventionally controlled cooling system.

Time-Efficient, Repetitive Predictions of the Performance of PEMFCs Based on a Neural Network-Based, Reduced Order Model

  • Shin Dong-Il;Oh Tae-Hoon;Park Myong-Nam;Rengaswamy Raghunathan
    • 한국가스학회지
    • /
    • 제10권2호
    • /
    • pp.55-60
    • /
    • 2006
  • Detailed modeling of PEMFCs has been getting considerable interest for predicting the fuel cell performance and also for use in various systems engineering activities. While CFD-based equipment models provide detailed analyses of the performance, they are very time-consuming to develop and run. The computations become quite complex when such models have to be embedded into the flowsheet-level optimization of fuel cell systems. In this paper, we present results about building and using NN-based reduced order models for quickly and repetitively predicting the flow of reactants in a PEMFC manifold.

  • PDF

연료전지와 열병합 발전을 고려한 마이크로그리드의 최적 운용 (Optimal Microgrid Operation Considering Fuel Cell and Combined Heat and Power Generation)

  • 이지혜;이병하
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.596-603
    • /
    • 2013
  • The increase of distributed power generation is closely related to interest in microgird including renuable energy sources such as photovoltaic (PV) systems and fuel cell. By the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. Especially operation technique which is core technology of microgrid is to supply heat and electricity energy simultaneously. Optimal microgrid scheduling can be established by considering CHP (Combined Heat and Power) generation because it produce both heat and electricity energy and its total efficiency is high. For this reason, CHP generation in microgrid is being spotlighted. In the near future, wide application of microgrid is also anticipated. This paper proposes a mathematical model for optimal operation of microgrid considering both heat and power. To validate the proposed model, the case study is performed and its results are analyzed.

유동해석에 의한 연료전지용 수소 재순환 블로워 개발 (Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis)

  • 심창열;홍창욱;김영수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF