• 제목/요약/키워드: Fuel Cell Model

검색결과 442건 처리시간 0.03초

연료전지용 컨버터 제어기에 관한 연구 (A Study on controller of converter for fuel cell)

  • 강주성;고강훈;최광주;홍두성;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1179-1180
    • /
    • 2006
  • This paper is aimed at presenting a computational model of a proton exchange membrane (PEM) fuel cell stack. The proposed simulation model is simple and at the same time includes all the important characteristics of a fuel cell stack. Close agreement between the simulation, manufacturer and experimental results confirm the validity and usefulness of the proposed FC model. Also, we propose the variable PI control method which has the best of follow efficiency than the PI control method. we confirm a reduced ripple and improved follow efficiencies when the system is applied the DC-DC converter, by simulation using PSIM.

  • PDF

모바일용 연료전지의 성능해석에 관한 연구 (A Study on the Performance Analysis of Mobile Fuel Cell)

  • 김광수;최종필;정창렬;장재혁;전병희;김병희
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

가정용 고분자 연료전지의 모델과 특성해석 (The characteristic analysis and model of PEM fuel cell for residential application)

  • 조영래;김남화;한경희;주경돈;윤신용;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.277-279
    • /
    • 2005
  • The imbalance of energy demand and supply caused by rapid industrialization around the world and the associated environmental issues require and alternative energy source with possible renewable fuels. Political instability and depletion of cruel oils are other factors that cause fluctuation of oil price. Securing a new alternative energy source for the next century became an urgent issue that our nation is confronting with. As a matter of fact, the fuel cell technology can be widely used as next generation energy regardless of regions and climate. Specially, the ability of expansion and quick installation enable one to apply it for distributed power, where the technology is already gaining remarkable attentions for the application. Particularly, leading industrialized nations are focusing on the PEM fuel dell with anticipation that this technology will find their place of applications in the vehicles and homes. In this study, demonstrate the multi physics modeling of a proton exchange membrane(PEM) fuel cell with interdigitated flow field design. The model uses current balances, mass balance(Maxwell-Stefan diffusion for reactant, water and nitrogen gas) and momentum balance(gas flow) to simulate the PEM fuel cell behavior.

  • PDF

배전계통집 연겨계 연료전지 발전시스템의 제어기 모델링 (Modeling of a Controller for Fuel Cell Plants Connected to a Power Distribution Network)

  • 노경수;박왕규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.516-518
    • /
    • 2000
  • This paper presents a methodology for effective control of fuel cell devices connected to the electric utility distribution network. A controller is designed for a fuel cell power plant to assist the conventional generators to damp out oscillations, which is possible by utilizing the fast response characteristic of fuel cells. Computer model of the controller is proposed and its effectiveness is proved by a sample test. Fuel cell devices can be used to improve power system stability when these are connected to a distribution system.

  • PDF

고분자 전해질 연료전지용 바이폴라 플레이트의 디자인에 관한 고찰 (A Study on the design of bipolar plate for proton exchange membrane fuel cell)

  • 윤정필;최장균;차인수;임중열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2007
  • Hydrogen fuel cell is clean and efficient technology along with high energy densities. While there are many different types of fuel cells, the proton exchange membrane fuel cell stands out as one of the most promising for transportation and small stationary applications. This paper focuses on design of bipolar plate for proton exchange membrane fuel cell. The bipolar plate model is realistically and accurately simulated velocity distribution, current density distribution and its effect on the PEMFC system using CFD tool FLUENT.

  • PDF

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao;Fayi Ya;Xuejian Pei
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.38-50
    • /
    • 2023
  • Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.

연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구 (Optimization of the multi-chamber perforated muffler for the air processing unit of the fuel cell electric vehicle)

  • 김의열;김민수;이상권;서상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.342-350
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

  • PDF

경량 연료전지 차체프레임 설계 프로세스 (Design Process of Light-weighted Fuel Cell Vehicle Body Frame)

  • 김기태;강성종
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.114-121
    • /
    • 2010
  • This paper presents a design process of light-weighted fuel cell vehicle (FCV) frame to meet design target of natural frequency in early design stage. At first, using validated FE model for the current design, thickness optimization was carried out. Next. optimization process, comprised of beam model size optimization, shell model design and shell model thickness optimization, was investigated for two frame types. In addition, in order to ensure hydrogen tanks safety against rear impact load, structural collapse characteristics was estimated for the rear frame model finally produced from the previous optimization process and, with the target of equal collapse characteristics to the current design model, structural modification with small weight increase was studied through static structural collapse analyses. The same attempt was applied to the front side frame. The results explain that the proposed process enables to design light-weighted frames with high structural performance in early stage.

고온형 고분자전해질 연료전지의 준3차원 모델링을 통한 국부적 동특성 해석에 관한 연구 (A Study on the Local Dynamic Characteristics of High Temperature Proton Exchange Membrane Fuel Cell by Quasi-three-dimensional Model)

  • 박재만;민경덕;강상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • High temperature proton exchange membrane fuel cell (HT-PEMFC) has been regarded as a promising clean energy sources. In this study, a quasi-three-dimensional dynamic model of HT-PEMFC has been developed and the local dynamic characteristics are investigated. The model has the geometrical simplification of 2+1D reduction (quasi-3D). The one-dimensional model consists of nine control volumes in cross-sectional direction to solve the energy conservation and the species conservation equations. Then, the one-dimensional model is discretized into 25 local sections along the gas flow direction to account for gas and thermal transport in channels. With this discretization, the local characteristics of HT-PEMFC such as species conservation, temperature, and current density can be captured. In order to study the basic characteristics of HT-PEMFC, it is important to investigate the local dynamic characteristics. Thus, the model is simulated at various operating conditions and the local dynamic characteristics related to them are observed. The model is useful to investigate the distribution of HT-PEMFC characteristics and the physical phenomena in HT-PEMFC.

  • PDF

단순모델을 이용한 막 가습기 열 및 물질 전달 특성 해석 (Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model)

  • 유상석;이영덕;배호준;황준영;안국영
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.596-603
    • /
    • 2009
  • The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/$Simulink^{(R)}$ $\Box$environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier.