• Title/Summary/Keyword: Fuel/Air Staged

Search Result 38, Processing Time 0.022 seconds

An Experiment on Low NOx Combustion Characteristics in a Multi-Staged Burner (다단연소기를 이용한 저 NOx 연소특성 연구)

  • Cho, Eun-Seong;Sung, Yong-Jin;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Staged combustion, such as air- and fuel-staging, is a relatively well-known technique fur reduction of NOx emission and used in combination with other techniques nowadays. However, the design variables are still selected depending upon operating conditions. There are many variables tested to investigate the NOx emission characteristics fur changing of fuel or air velocity, swirl intensity, and staging ratio of air and fuel in multi-staged burner. In air-staging case, the fuel-rich condition of the primary combustion zone is very helpful to reduce NOx emission and its range is known to be restricted by the increase of carbon monoxide. However, in many cases carbon monoxide level is not too high to be restricted operating condition. So we tried to expand the equivalence ratio range to the richer condition in the primary combustion zone and certificate the function of each burner component and its contribution to the overall NOx production.

An Experimental study on swirl flow and combustion characteristics of 3 staged low NOx burner applied with FGR and FIR (FGR 및 FIR을 적용한 3단 저 NOx 버너의 Swirl유동 및 연소특성에 관한 실험적 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Cha, Hak-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.105-112
    • /
    • 2002
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, air staged commercial propane flame configuration are studied. For this triple air staged combustor, the angular momentum weighted by it's swirl number and air distribution ratio was observed to be the critical criteria. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must he transferred from the flame via radiation to the chamber heat transfer surfaces, such that when the second air is introduced, peak flame temperatures are suppressed. It is experimentally found out that the total NOx emission level in this type of burner is lower than 0.75g/kg.

  • PDF

Combustion Charateristics of Biomass Blends on a 15KW Pulverized Coal furnaces (15kW급 미분탄 연소로내에서 바이오매스 혼소율 변화에 따른 연소 특성 비교)

  • Lee, Sangmin;Sung, Yonmo;Choi, Minsung;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.41-44
    • /
    • 2014
  • This study focused on the effect of the biomass blended ratio on air-staged pulverized coal furnace. The hybrid NOx reduction technology between fuel blending and air staging has been applied in an air-staged pulverized coal fired furnace. The results indicated that co-firing biomass with coal could reduce NOx emissions in an air-staged combustion. In addition, carbon burnout and flame temperature increased under the air-staged condition. A dominant synergistic effect on NOx reduction and carbon burnout was observed when biomass co-firing with coal was applied in air staged combustion.

  • PDF

Eco-machinery Engineering Technology for Reducing NOx Emission (질소산화물과 관련한 환경기계기술)

  • Ahn, Kook-Young;Kim, Han-Seok;Cha, Min-Seok;Lee, Jin-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.301-310
    • /
    • 2003
  • Eco-Machinery engineering technologies in KIMM for reducing NOx emission were introduced. Combustion technologies such as reburning and fuel staged or air staged combustion have been applied to reduce NOx emission in the field of boiler furnaces. Lean premixed combustion method have been studied in gas turbine combustor. Hybrid system with plasma and SCR being considered as prospective method of De-NOx has been developed. Also, low NOx technologies including common rail system, EGR and DPF in diesel engine have been investigated.

  • PDF

Characteristics of UBC and NOx Emission in Air Staging Combustion (공기 다단 연소 기법 적용에 따른 미연탄소분 및 질소산화물 배출특성)

  • Kim, Jeong Woo;Lim, Ho;Go, Young Gun;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.637-644
    • /
    • 2016
  • The purpose of this study is to understand the characteristics of unburned carbon (UBC) and NOx emissions for pulverized coal when air staging combustion is applied. A two-staged drop tube furnace capable of applying air staging combustion was designed and installed. The combustion of sub-bituminous (Tanito) has been investigated. UBC and the NOx concentration were measured under various temperatures and stoichiometric ratios in unstaged and staged combustion. As a result, UBC decreased and the NOx concentration increased with an increase in stoichiometric ratio and temperature. In particular, the NOx reduction mechanism was activated when the temperature in the fuel rich zone increased. Both UBC and the NOx concentration decreased as the temperature increased in the fuel rich zone. A high NOx reduction effect was obtained, compared to the UBC increase, when the air staging technique was applied.

Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion (미분탄 연소에서 NOx 저감을 위한 공기다단의 효과)

  • Jang, Gil-Hong;Chang, In-Gab;Sun, Chil-Young;Chon, Mu-Hwan;Yang, Gwan-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

Reduction of NOx emission from fuel nitrogen in new staged fuelling system(1)(Characteristics of NOx formation & reduction)

  • Chun, Young-Nam;Shin, Dae-Yewn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.303-310
    • /
    • 1994
  • The effects of NOx reduction by new staged fuelling system in a small scale combustor (6.6 ㎾$_{T}$) have been investigated using propane gas flames laden with ammonia as fuel-nitrogen. The variables which had the greatest influence on NOx reduction were temperature, reducing stoichiometry( related to main combustion zone stoichiometry, air fraction and returning fuel fraction ) and residence time. The best NOx reduction was observed at the reburning zone stoichiometry of 0.85. In terms of residence time of the reburning zone, NOx reduction was effective when burnout air was injected at the Point where the reburning zone has been already established.d.

  • PDF

Experimental and Numerical Study of Low NOx Multi-Staged Burner in the Test Combustor (시험용 연소로에서의 다단 저 NOx 버너의 실험 및 수치적 연구)

  • Choi, Yun-Ki;Kang, Kyung-Tae;Lim, Ki-Suk;Ko, Dong-Wan;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1339-1347
    • /
    • 2004
  • Development of the low NOx heating boiler was strongly asked due to severe air pollution and the large number of boilers in korea. Compactness of the commercial boiler was also important because of low manufacturing cost and easy installation. In this study. newly developed compact low NOx burner, using turbulent gas diffusion combustion with multi-staged air supplies and multiple fuel nozzles, was investigated. Comparison study of the new burner was performed between experimental results and computational analysis. Commercial computational fluid dynamic(CFD) program named CFX-5.6 was used for numerical analysis of the low NOx burner inside the test combustor. Comparisons of experiment data and numerical result were performed under various equivalence ratio and fuel flow rate.

Doubled Thrust by Boundary Layer Control in Scramjet Engines in Mach 4 and 6

  • Mitani, Tohru;Sakuranaka, Noboru;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.734-741
    • /
    • 2004
  • Boundary layer ingestion in airframe-integrated scramjet engines causes engine stall (“engine un start” hereafter) and restricts engine performance. To improve the unstart characteristics in engines, boundary layer bleed and a two-staged injection of fuel were examined in Mach 4 and Mach 6 engine tests. A boundary layer bleed system consisting of a porous plate, an air coolers, a metering orifice and an ON/OFF valve, was designed for each of the engines. First, a method to determine bleed rate requirements was developed. Porous plates were designed to suck air out of the Mach 4 engine at a rate of 200 g/s and out of the Mach 6 engine at a rate of 30 g/s. Air coolers were then optimized based on the bleed airflow rates. The exhaust air temperature could be cooled below 600 K in the porous plates and the compact air coolers. The Mach 4 engine tests showed that a small bleed rate of 3% doubled the engine operating range and thrust. With the assistance of two-staged fuel injection of H2, the engine operating range was extended to Ф0.95 and the maximum thrust was tripled to 2560 N. The Mach 6 tests showed that a bleed of 30 g/s (0.6% of captured air in the engine) extended the start limit from Ф0.48 to Ф1 to deliver a maximum thrust of 2460 N.

  • PDF