• Title/Summary/Keyword: Fucofuroeckol-b

Search Result 2, Processing Time 0.014 seconds

Inhibitory effect of Fucofuroeckol-A from Eisenia bicyclis on tyrosinase activity and melanin biosynthesis in murine melanoma B16F10 cells

  • Shim, Kil Bo;Yoon, Na Young
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.11
    • /
    • pp.35.1-35.7
    • /
    • 2018
  • Background: The aim of this study was to investigate the in vitro inhibitory effects of Fucofuroeckol-A isolated from Eisenia bicyclis against tyrosinase activity and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin biosynthesis in B16F10 melanoma cells. Result: Among the ethanolic (EtOH) extract of E. bicyclis and its organic solvent fractions, the ethyl acetate (EtOAc) soluble fraction showed a noticeable inhibitory effect on mushroom tyrosinase with an $IC_{50}$ value of $37.6{\pm}0.1{\mu}g/mL$. Repeated column chromatography of the active EtOAc fraction resulted in the isolation of Fucofuroeckol-A. It evidenced more potent tyrosinase inhibitory effect with an $IC_{50}$ value of $11.4{\pm}1.4{\mu}M$ than arbutin ($IC_{50}=1076.6{\pm}44.3{\mu}M$), which was used as a positive control. Lineweaver-Burk plots suggest that Fucofuroeckol-A plays as a noncompetitive inhibitor against tyrosinase. Furthermore, we have evaluated the inhibitory effects of Fucofuroeckol-A on IBMX-induced melanin formation in B16F10 melanoma cells. Fucofuroeckol-A ($12.5-100{\mu}M$) exhibited a significant inhibition of melanin production in the melanoma cells. Conclusion: In the present study, we suggested that Fucofuroeckol-A might prove possibility as a novel inhibitor of melanin biosynthesis in cosmetic applications.

A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.12
    • /
    • pp.38.1-38.9
    • /
    • 2018
  • Alzheimer's disease (AD) is a disturbing and advanced neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta ($A{\beta}$) and the hyperphosphorylation of tau proteins in the brain. The deposition of $A{\beta}$ aggregates triggers synaptic dysfunction, and neurodegeneration, which lead to cognitive disorders. Here, we found that FF isolated from an eatable perennial brown seaweed E.bicyclis protect against $A{\beta}$-induced neurotoxicity in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y-APP695swe). The FF demonstrated strong inhibitory activity for ${\beta}$-secretase ($IC_{50}$ $16.1{\mu}M$) and its inhibition pattern was investigated using Lineweaver-Burk and Dixon plots, and found to be non-competitive. Then, we tested whether FF could inhibit production of $A{\beta}$ in SH-SY5Y-APP695swe. FF inhibited the production of $A{\beta}$ and soluble-APP, residue of APP from cleaved APP by ${\beta}$-secretase. Our data show that FF can inhibit the production of $A{\beta}$ and soluble-$APP{\beta}$ via inhibition of ${\beta}$-secretase activity. Taken together these results suggest that FF may be worthy of future study as an anti-AD treatment.