• Title/Summary/Keyword: Fruit tree

Search Result 453, Processing Time 0.022 seconds

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Varietal and Locational Variation of Grain Quality Components of Rice Produced in Hilly and High Altitude Areas in Korea (중산간지와 고냉지산 쌀 형태 및 이화학적특성의 품종 및 산지간 변이)

  • Choi, Hae-Chune;Chi, Jeong-Hyun;Lee, Chong-Seob;Kim, Young-Bae;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.27-37
    • /
    • 1994
  • To catch the relative importance of varietal and environmental variation in various grain quality components associated with palatability of cooked rice, grain appearance, milling recovery, several physicochemical properties of milled rice and texture or eating quality of cooked rice for rice materials of five japonica cultivars, produced at four locations of the mid-mountainous and alpine area of Korea in 1989, were evaluated and analyzed the obtained data. Highly significant varietal and locational variations were detected in 1000-grain weight, amylose content, K/Mg ratio, gelatinization temperature, peak viscosity, breakdown and setback viscosities as compared with variety x location interaction variation. Also, marked locational variations were recongnized in milling recovery from rough to brwon rice, alkali digestibility and protein content, and significant varietal variation was caught in stickiness /hardness ratio of cooked rice. The variety x location interaction variation was especially large in quality components of grain appearance and ripening, palatability of cooked rice and consistency viscosity. One thousand kernel weight was heaviest in Jinbuolbyeo and Odaebyeo, and the unfilled grain ratio was lowest in Jinbuolbyeo. Odaebyeo showed slightly' lower ratio of intact and clear milled rice because of more chalky rice kernels compared with other cultivars. Amylose content of Jinbuolbyeo and Sobaegbyeo was about 1% lower than that of others and K/Mg ratio of Odaebyeo was the lowest one among rice materials. Odaebyeo, Sobaegbyeo and Jinbuolbyeo revealed significantly low gelatinization temperature and setback viscosity while high peak and breakdown viscosities. Cholwon rice showed the greatest kernel weight, good grain filling but lowest ratio of intact and clear milled rice while Jinbu rices exhibited the highest milling recovery from rough to brown rice and ratio of sound milled rice. Amylose content of milled rice in Jinbu rices was about 2-3% lower than those in other locations. Protein content of polished rice was about 1% lower in rice materials of middle zone than those of southern part of Korea. K/Mg ratio of milled rice was highest in Jinbu rice and potassium content was slightly higher in the rice materials of middle region than in those of southern region. Alkali digestion value and gelatinization temperature of polished rice was markedly high in Jinbu rices as compared with other locations. Breakdown viscosity was hightest in Chlown rices and next higher with the order of Hwaso>Unbong>Jinbu rices, and setback viscosity was the quite contrary tendency with breakdown. The stickiness /hardness ratio of cooked rice was relatively higher value in Cholwon rices than in the others and the palatability of cooked rice was a little better in Unbong and Cholwon rices than in Jinbu and Hwaso rices, although variety x location interaction variation was large. The rice materials can be classified largely into two groups of Jinbu and the others by the distribution on the plane of 1st and 2nd principal components (about 60% of total informations) contracted from twelve grain quality properties closely associated with eating quality of cooked rice. Also, Jinbu and the other rices were divided into two and three rice groups respectively. Varietal variation of overall rice quality was smallest in Hwaso. The most superior rice group in overall quality evaluation included Odaebyeo produced at Cholwon, Unbong and Hwaso, and Sobaegbyeo grown at Unbong

  • PDF

Varietal and Locational Variation of Grain Quality Components of Rice Produced n Middle and Southern Plain Areas in Korea (중ㆍ남부 평야지산 발 형태 및 이화학적 특성의 품종 및 산지간 변이)

  • Choi, Hae-Chune;Chi, Jeong-Hyun;Lee, Chong-Seob;Kim, Young-Bae;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.15-26
    • /
    • 1994
  • To understand the relative contribution of varietal and environmental variation on various grain quality components in rice, grain appearance, milling recovery, several physicochemical properties of rice grain and texture or palatability of cooked rice for milled rice materials of seven cultivars(five japonica & two Tongil-type), produced at six locations of the middle and southern plain area of Korea in 1989, were evaluated and analyzed the obtained data. Highly significant varietal variations were detected in all grain quality components of the rice materials and marked locational variations with about 14-54% portion of total variation were recognized in grain appearance, milling recovery, alkali digestibility, protein content, K /Mg ratio, gelatinization temperature, breakdown and setback viscosities. Variations of variety x location interaction were especially large in overall palatability score of cooked rice and consistency or set- back viscosities of amylograph. Tongil-type cultivars showed poor marketing quality, lower milling recovery, slightly lower alkali digestibility and amylose content, a little higher protein content and K /Mg ratio, relatively higher peak, breakdown and consistency viscosities, significantly lower setback viscosity, and more undesirable palatability of cooked rice compared with japonica rices. The japonica rice varieties possessing good palatability of cooked rice were slightly low in protein content and a little high in K /Mg ratio and stickiness /hardness ratio of cooked rice. Rice 1000-kernel weight was significantly heavier in rice materials produced in Iri lowland compared with other locations. Milling recovery from rough to brown rice and ripening quality were lowest in Milyang late-planted rice while highest in Iri lowland and Gyehwa reclaimed-land rice. Amylose content of milled rice was about 1% lower in Gyehwa rice compared with other locations. Protein content of polished rice was about 1% lower in rice materials of middle plain area than those of southern plain regions. K/Mg ratio of milled rice was lowest in Iri rice while highest in Milyang rice. Alkali digestibility was highest in Milyang rice while lowest in Honam plain rice, but the temperature of gelatinization initiation of rice flour in amylograph was lowest in Suwon and Iri rices while highest in Milyang rice. Breakdown viscosity was lowest in Milyang rice and next lower in Ichon lowland rice while highest in Gyehwa and Iri rices, and setback viscosity was the contrary tendency. The stickiness/hardness ratio of cooked rice was slightly lower in southern-plain rices than in middle-plain ones, and the palatability of cooked rice was best in Namyang reclaimed-land rice and next better with the order of Suwon$\geq$Iri$\geq$Ichon$\geq$Gyehwa$\geq$Milyang rices. The rice materials can be classified genotypically into two ecotypes of japonica and Tongil-type rice groups, and environmentally into three regions of Milyang, middle and Honam lowland by the distribution on the plane of 1st and 2nd principal components contracted from eleven grain quality properties closely associated with palatability of cooked rice by principal component analysis.

  • PDF