• Title/Summary/Keyword: Frosting process

Search Result 6, Processing Time 0.021 seconds

Frosting and defrosting characteristics of a showcase system (쇼케이스의 적상 및 제상 특성)

  • Noh, H.I.;Park, Y.C.;Kim, Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.309-313
    • /
    • 2000
  • An experimental study was conducted to analyze the characteristics of the showcase refrigeration system during frosting and defrosting process. Test showcase was constructed with a cooling capacity of 3RT including 3 evaporators. The dynamic characteristics of the system under frosting and defrosting conditions were investigated. Refrigerant temperature and pressure of the system, dry bulb and wet bulb temperature of air passing through the evaporator, air flow rate and compressor power were measured.

  • PDF

Experiment of frost growth on the parallel plates in the condition of laminar and low humidity (층류유동 저습도 조건에서의 평행평판형 냉각판 서리성장 실험)

  • 한흥도;노승탁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.440-447
    • /
    • 1999
  • The frosting characteristics on the vertical parallel plates with three cooling plates were experimentally investigated. The experimental parameters were the cooling plate temperature, the air humidity, the air temperature, the air Reynolds number, and the location. The frosting conditions were limited to air temperatures from 10 to $15^{\circ}C$ , air Reynolds numbers from 1600 to 2270, air humidity ratios from 0.00275 to 0.0037kgw/kga and cooling plate temperatures from -10 to $-20^{\circ}C$. Frost growth and density toward the front of the plate were more thick and dense than toward the rear. Frost growth increased with decreasing plate temperature and increasing humidity. In the conditions of the laminar flow, dew point below $0^{\circ}C$and non-cyclic frosting period, frost thickness increased with increasing air temperature. The reason of increasing frost thickness with increasing air temperature was sublimation-ablimation process. The average growth thickness along the locations showed little dependence on the Reynolds numbers.

  • PDF

Experimental Study on the Performance Characteristics of Hot-gas Bypass and On-off Defrosting Cycle in a Showcase Refrigeration System (쇼케이스에서 고온가스 바이패스 및 단속운전 제상사이클의 성능특성에 관한 실험적 연구)

  • 김용찬;조홍현;노현일;김영득;박윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.493-502
    • /
    • 2002
  • During the defrosting process, the temperature in the cabinet of a showcase becomes high as compared to the setting point, which is not desirable for stored foods or materials. It is necessary to develop a more efficient defrosting method to prevent large temperature fluctuation. In this study, the performance of a showcase refrigeration system with three evaporators is investigated by employing a hot-gas bypass defrosting technology in the system under frosting and defrosting conditions. The operating characteristics are compared with those for the on-off defrosting method that has been widely used in current products. As a result, the hot-gas bypass defrosting method shows higher refrigerating capacity and less temperature fluctuation than the on-off method under frosting/defrosting conditions, while the power input is relatively high for the hot-gas bypass method.

A Computer Simulation for Performance Prediction of Fin-Tube Heat Exchanger under Frosting Conditions (착상조건 하에서 핀-관 열교환기의 성능예측을 위한 컴퓨터 시뮬레이션)

  • Lee, K.S.;Pak, H.Y.;Lee, W.Y.;Lee, T.H.;Lee, S.Y.;Lee, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.161-170
    • /
    • 1995
  • This study is concerned with the numerical analysis of performance on fin-tube heat exchanger under frosting condition. In this work, tube-by-tube method using LMED is employed. The present results are compared with O'Neal's experimental and numerical results. A standard evaporator model with 2rows-2columns is selected to investigate the effects of the various parameters such as fin pitch, air flow velocity, and humidity. The results show that frost thickness and the amount of frost per unit area decrease as fin-pitch becomes narrower. In the meantime, frost thickness and accumulation rate increase with higher inlet air humidity. It is shown that heat transfer rate increases during 30minutes and then it decreases. Heat transfer rate and the amount of frost increase with air velocity, however frost thickness does not increase over a certain velocity.

  • PDF

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Quality Characteristics of Wheat Flour Breads with the Doughs Frozen at the Different Freezing and Storage Conditions (반죽의 냉동과 저장 조건에 따른 빵의 품질 특성)

  • Koh, Bong-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.413-418
    • /
    • 2002
  • The dough was frozen either before or after fermentation at the five different freezing and storage conditions. Although fermentation before freezing was effective for rapid freezing, it reduced bread volume of the dough frozen at both air freezer and liquid immersion freezer. Freezing at the air freezer set to $-70^{\circ}C$ took more time for freezing and resulted in lower bread volume than freezing at the immersion freezer set to $-20^{\circ}C$. Therefore, the freezing in the liquid immersion freezer was more effective to reduce the freezing time and increase the bread volume. At the liquid immersion freezer, the higher temperature was more effective than lower temperature. The doughs frozen in a liquid immersion freezer set to $-10^{\circ}C$ and fermented after de-frosting produced higher bread volume than control unfrozen dough. And also there was no significant difference in bread volume between the control unfrozen dough and the dough frozen in a liquid immersion freezer set to $-10^{\circ}C$, fermented before freezing and re-fermented after defrosting. The longer proof time and greater loaf volume obtained for the dough frozen and stored at the air freezer set to $-70^{\circ}C$. Therefore the optimum process for freezing the dough was freezing immediately after mixing, storing at $-10^{\circ}C$ in a liquid immersion freezer and fermented after defrosting.