• Title/Summary/Keyword: Front displacement

Search Result 169, Processing Time 0.021 seconds

Case Study for Lateral Displacement of Caisson installed on Deep Soft Soils (대심도 연약지반상에 건설되는 케이슨의 측방변형 사례 연구)

  • Kim, Myung-Hak;Yoon, Min-Seung;Lee, Sang-Wook;Lee, Chea-Kyun;Han, Byoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.940-950
    • /
    • 2010
  • In case of uneven surcharge like backfill or embankment after constructing caisson applied on the deep soft marine deposits, lateral deformation of soft soils would happen due to plastic deformation of soil particles by increase of excess pore water pressure. Lateral deformation of soil will result in the caisson displacement which affects soft soil-caisson structure safety. Soft soil was improved by soil compaction pile method, and then gravity caisson was installed. Soil deformations were monitored and analyzed with step by step backfill and embankment behind the caisson. Amount and speed of lateral deformation after the installation of caissons were closely related with the time of backfill and embankment. The relationship between maximum lateral displacement($\Delta_y$) in front of caisson and settlement($\Delta_s$) can be expressed as $\Delta_y=(0.0871)\Delta_s+122.95$. Soft soil depth did not affect the lateral displacement of caisson in this study, which can be explained the soft soil improvement under the caisson by S.C.P. method. Substantially the amount and speed of the lateral deformation of caisson were closely related with the uneven surcharging rate behind caisson.

  • PDF

Design Model of Intensity Modulation Type Displacement sensor Using Step-index Multimode Optical Fiber (스텝 인덱스 멀티모드 광섬유를 이용한 광강도 변조방식 변위센서 설계모델 연구)

  • Shin, Woo-Cheol;Hong, Jun-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.500-506
    • /
    • 2006
  • An optical fiber displacement sensor has the advantages of relatively simplicity, cheap, small probe size and immunity against environmental perturbation. The working principle of the sensor is based on the intensity modulation that is detection light intensity reflecting from the surface being measured. This paper presents the mathematical model of displacement measurement mechanism of this sensor type. The theoretical and experimental data are compared to verify the model in describing the realistic approach to sensor design. Finally, the analysis results show that displacement response characteristics such as sensitivity, measuring range are easily modified by principal design parameters such as magnitude of optical Power, diameter of optical fiber core and distance between transmitting fiber and receiving fiber.

Analysis of the Female 500m Sprint Starting Motion in Short Track Speed Skating (여자 500m 쇼트트랙 스피드 스케이팅의 스타트 기술분석)

  • Back, Jin-Ho;Kwak, Chang-Soo;Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.285-299
    • /
    • 2004
  • The purpose of this study is to identify female 500m sprint start motion by the center of gravity position in short track speed skating. The center of gravity position ratio was divided into three type(type A front : 80%-back : 20%, type B front : 70%-back 30%, type C front: 50%-back : 50%). Three video cameras were used for 3D motion analysis with DLT method and the results were as follows: The elapsed time in starting motion was appeared that type B was the shortest and type A was the longest. It was appear that the stroke length of type A was longer than that type B and C during starting phase. This result was similar to displacement of center of gravity. It was appeared that skill type of center of gravity position ratio type B' ankle and knee joint angle were lower than that of type A and C. Observing these results it was conclusion that skill type B of center of gravity position ratio was more faster than that of type A and C. But it is important that these skill type needed to verifying more subjects.

Influence of Spot Weld Pitches on Collapse Characteristics of SCPI Vehicle Members (차체구조용 SCPI 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.78-78
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

Influence of Spot Weld Pitches on Collapse Characteristics for SCP1 Vehicle Members (차체구조용 SCP1 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.802-808
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

First report on Gonyaulax polygramma (Gonyaulacales, Dinophyceae) blooms in the Yeosu waters of the South Sea of Korea

  • Cho Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.639-647
    • /
    • 2005
  • The aim of this study is to determine the outbreaks of nontoxic Gonyaulax polygramma Stein in Yeosu waters in place of harmful Cochlodinium polykrikoides Margalef, which has occurred annually in the same region since 1995. The observation of cellular arrangement and structure by electron microscopy showed that G. polygramma isolated from Yeosu waters had a few spines connecting with membranes and prominent longitudinal ridges on the cell surface, with a cingular displacement 1.5 times their cell width. Furthermore, the location of the nucleus was posterior of large oval formation according to electron microscopy. On 6 August, 2004, the first bloom of G. polygramma occurred, the date of its disappearance was with a maximum cell density of 8,000 cells $ml^{-1}$ on 21 August, 2004. During the period of this study, the horizontal distribution of sea water temperature and salinity showed a strong coastal front, whereas the front of DIN (Dissolved Inorganic Nitrogen) was significantly different between the occurrence and disappearance of G. polygramma blooms. These results suggested that the process of the breakdown of stratification by wind and a low level of inorganic nitrogen play important roles in the rapid growth of G. polygramma, which is associated with a greater robustness in growth against DIN than that of C. polykrikoides in nature.

Analysis of Wave Pressure of Irregular Waves in front of a Breakwater (방파제 전면부에서의 불규칙파의 파압해석)

  • Woo Jong Hyub;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1073-1077
    • /
    • 2005
  • In this study, wave pressure is calculated by using irregular waves in front of a breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-{\varepsilon}$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. The results of two cases present that wave pressure change due to irregular wave similar to wave height of irregular wave. It is observed that wave pressure of Case 2 more bigger than wave pressure of Case 1 at the same position.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part II : Application to the front Door Panel Forming Process (박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - Part II : 프런트 도어 판넬 성형공정에서의 적용)

  • Park, J.S.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.513-518
    • /
    • 2002
  • The equivalent boundary conditions have been applied to the front door panel forming process, in order to demonstrate its reliability and validity. The elongation in the bead forming process is applied to the binder wrap process as the equivalent displacement boundary condition and the restraining force in the drawing process is applied to stamping process as the equivalent force boundary condition. The result calculated with the equivalent boundary conditions shows closer coincidence with the experimental result than simulation with different boundary conditions. The numerical result fully demonstrates that drawbead forming simulation for calculation of equivalent boundary conditions is necessary and effective.