• Title/Summary/Keyword: Front End Bending

Search Result 9, Processing Time 0.022 seconds

A Roll-Bite Profile Map Approach for the Prediction of Front End Bending in Plate Rolling (후판 압연공정에서 선단부 굽힘 예측을 위한 롤 바이트 형상맵 기법에 관한 연구)

  • Byon, S.M.;Lee, J.H.;Kim, S.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.284-290
    • /
    • 2011
  • The front end bending(FEB) behavior of material that usually occurs in plate rolling is investigated. In this paper, a rollbite profile map approach that systematically predicts the FEB slope is presented. It is based on the concurrent use of shape factors and reduction ratios to ensure an accurate value of the FEB and its slope. In order to obtain the unit roll-bite profile map, the FEB slope model was decomposed into a temperature deviation component and a roll-velocity deviation component. By mapping the results of a series of finite element analyses to the unit functions of the roll-bite profile map, it was possible to obtain a realistic prediction of the FEB slope applicable to an actual plate rolling process. Thereby, the usefulness of the present approach is clearly demonstrated.

Strip Shape Analysis and Curvature Prediction of Front End Downward Bending in Plate Rolling by Finite Element Method (후판 압연중 발생하는 판의 하향벤딩시 선단부 판 형상의 고찰 및 곡률예측)

  • 이중형;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.110-114
    • /
    • 1997
  • The major object in this report is the curvature prediction of front end downward bending in plate rolling. Because of relations front end shape and curvature in plate, many simulations were carried out to obtain empirical model. Simulation conditions, for example the position and the size of bottom stripper or roller table etc., were limited to the POSCO conditions. Though the result in this report can be applied to the special case, the tendency of this result is similar to the many cases. So the empirical model equation can be improved or expanded to many simulation conditions.

  • PDF

Crash Performance of Front Side Member Impacted with Angle (프론트 사이드 멤버의 경사 충돌 성능)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

Bumper Stay Design for Improving Frontal Crash Performance of Front Body (전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계)

  • Kang, Sungjong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

Design of a Composite Propeller Shaft with the Reduced Weights and Improved NVH (경량화 및 NVH 향상을 위한 복합재료 프로펠러 축의 설계)

  • Yoon, Hyung-Seok;Kim, Cheol;Moon, Myung-Soo;Oh, Sang-Yeob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.151-159
    • /
    • 2003
  • The front 2 pieces of the 3-piece steel propeller shaft installed on a 8.5-ton truck were redesigned with a 1 -piece composite propeller shaft with steel yokes and spline parts to get the reduction of weight and the improvement of NVH characteristics. Based on the analysis of bending vibration, strength and cure-induced residual stresses of the composite propeller shaft, proper composite materials and stacking sequences were selected. The composite propeller shaft requires a reliable joining method between the shaft and steel end parts through a steel connector. From 3-D contact stress analyses of the laminated composite shaft with bolted Joints, the 3-row mechanical joint which satisfies the torque transmission capability has been designed. Several full-scale composite shafts were fabricated and tested to verify the design analyses. The design requirements are shown to be satisfied. With the newly designed composite shaft, the weight reduction more than 50% and improvements in NVH characteristics have been achieved.

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Site Layout of ChungChong-Do Chonui-hyon Government Office in the Late Chosen Dynasty (조선후기(朝鮮後期) 충청도(忠淸道) 전의현(全義縣) 관아건축(官衙建築)의 배치구성(配置構成)에 관한 연구(硏究))

  • Kim, Ki-Deok;Lee, Jae-Heon
    • Journal of architectural history
    • /
    • v.10 no.4 s.28
    • /
    • pp.7-21
    • /
    • 2001
  • This study is to analyze site layout traditional government office building focused on Chonui-hyon(全義縣) in Chungchong province with Chungchong-do regional maps(忠淸道地方地圖) and Eupjis(邑誌, topography) being compiled in the late Chosun dynasty. The conclusion of analysis can be summarized as follows; 1. Chonui-hyon(全義縣) in Chosun dynasty is gone with a planning principle of the capital city(Han-Seong, 漢城) with disposing Sa-Ji-Dan(社稷壇) and Gaek-Sa(客舍), which are placed to the left and right of Eupchi(邑治), and it is followed in the wake of the spatial structure of Chosun dynasty palace with disposing Dong-Heon(東軒) in front, Nae-A(內衙) at the back of it, or from side to side, also by the Dong-Heon of the center, with organizing each facility around it. 2. Dong-Heon and Gaek-Sa of Chonui-hyon is passed through three step gate, Mun-Ru(門樓), Woi-Sammun(外三門), Nae-Sammun(內三門), from Hong-Salmon(紅門), and are shown hierarchy by haying been placed at the end of approach axis. 3. Dong-Heon can be disposed by Feng-Shui(風水) which have influence on the southeast direction with Jin-San(鎭山) and An-Dae(案對), on the other hand, Gaek-Sa can be disposed by symbolic of the authority of a king. 4. Site layout by function of provincial government office is provided into four ferrite, Dong-Heon, Gaek-Sa, Nae-A, practical business territory, and eve territory is organized by official institution on a social position to radiation, by the compositive axis to be made Woi-Sammun Nae-Sammun Dong-Heon Nae-A 5. Approach process of Chnui-hyon government office is three door system similar to Kam-Young(監營) in a different way two door system in most provincial government office, also approach axis is formed by bending.

  • PDF

Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Kim, Tae Ho;Lee, Jongsung;Cho, Kyung Seok;Ha, Kyoung-Ku;Lee, Chang Ha
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.