• Title/Summary/Keyword: Fringing flux

Search Result 17, Processing Time 0.02 seconds

A study and experiment on the stabilization characteristic and the stiffness in Active Magnetic Bearing (자기베어링시스템 강성의 실험적 고찰을 통한 안정화 특성에 관한 연구)

  • 강성구;강종규;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.388-392
    • /
    • 2004
  • Due to the lack of stiffness and difficulties of control, it is hard to achieve well balanced magnetic levitation. In this paper, we analysis the current and position stiffness change according to bias current through experiment. Then, compensation equations were presented. After obtaining PD gain for each bias current and PD gain region through levitation experiment, we consider the characteristics.

  • PDF

Analysis of the Airgap Permeance Distribution for Slot Type of the Induction Motor (유도전동기의 슬룻 모양에 따른 공극 퍼미언스 분포 해석)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Cho, Hyun-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.717-719
    • /
    • 2003
  • In terms of induction motor analysis, magnetic energy conversion takes place into mechanical energy in air gap. Therefore, flux distribution in air Sap has to be analyzed in detail more than other place of induction motor. In this paper, the air gap permeance of induction motor, which was effected by means of skewed angle and fringing, was analyzed.

  • PDF

Design of a lock plate for a converter transformer by finite element method (유한요소법을 이용한 컨버터 변압기 록플레이트 설계)

  • Kim, Ji-Hyun;Kim, Young-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.954-956
    • /
    • 2005
  • For transformer designers, eddy current loss calculation of steel structure is required to consider temperature rise on transformers. This study describes design of a lock plate for converter transformers by finite element method. The lock plate may be locally heated by fringing flux due to air-gap. 3D finite element analysis is performed and compared so as to minimize eddy loss on the lock plate with different materials and structures

  • PDF

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.

Design and Simulation Technologies of Flat Transformer with High Power Current (대전류 출력형 Flat Transformer 설계 및 해석 기술)

  • Han, Se-Won;Cho, Han-Goo;Woo, Bung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Study on designing of Flat Transformer and operating characteristics of Converter (Flat Transformer 코아의 설계와 컨버터 동작 특성)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

An Electrical Machine Design Technique Combining Magnetic Equivalent Circuit and Finite Element Methods (자기회로법과 유한요소법을 결합한 전기기기 설계)

  • Choi, Hong-Soon;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.18-20
    • /
    • 1999
  • In this paper, the space mapping algorithm is proposed for the design of electric machines. By the algorithm, we can combine the magnetic equivalent circuit and the finite element models mathematically and got the final design parameters with a few iterations while preserving the accuracy offered by the finite element model. The finite element model is generated by parametric techniques. For the validity of this algorithm, a simple permanent magnet device with fringing and leakage flux is dealt as a numerical example.

  • PDF