• Title/Summary/Keyword: Friction-induced vibration

Search Result 65, Processing Time 0.028 seconds

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

A Pattern Analysis of Impact Signal in Reactor Coolant System (원전 원자로냉각재계통 내의 충격신호 유형 분석)

  • Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.181-184
    • /
    • 2014
  • Loose Parts Monitoring System(LPMS) monitors loosened or detached parts and foreign parts inside the pressure boundary of a reactor coolant system (RCS). It is difficult to discriminate valid signal from LPMS alarms at full power since the signal pattern by thermal shocks and structure friction are similar to those by loose metal impacts. In addition, It is more difficult to discriminate the impact signals induced by the rod driving, sensor hard-line movement and loosened component since they have similar frequency characteristics with valid signals. This paper classifies the signal patterns by analyzing actual LPMS signal captured during nuclear power plant operation.

  • PDF

A Study on Thermal Analysis in Ventilated Disk Brake by FEM (FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구)

  • Kim, Sung-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

Computational Study of Automotive Drum Brake Squeal (자동차 드럼 브레이크의 스퀼 전산 해석 연구)

  • Jung, Taeksu;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-22
    • /
    • 2014
  • Automotive NVH on brake operation is mainly caused by a coupling action of vehicle speed and inter parts friction and its frequency occurs over a broad band of 0.1 kHz~10 kHz. Especially, squeal noise, being a self-excited vibration generated by friction force between drum and lining, occurs over 1 kHz and consequently dynamic instability is induced when friction energy is applied to a brake vibration system. The squeal strongly depends on nonlinear properties influenced by the material of lining, velocity of vehicle, and the dynamic properties of a brake system. The dynamic properties are considered as a main influential design factor to squeal noise, however the analysis of the properties are rarely facilitated due to arbitrariness of shape by wearing down. In this paper, we research generating tendency of squeal noise through complex eigenvalue analysis, tracking drum brake's unstable modes in accordance with the wear shape of drum and lining such as tapered and bellmouth shape, and analyze computed unstable modes by variable shapes.

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF

Seismic Performance Evaluation of Vibration Attenuation Wireway-Pulley System Using the FE Analysis (유한요소해석을 통한 진동 감쇠형 와이어웨이시스템의 내진성능 검증)

  • Tran, V. Han;Jin, Su Min;Kim, Sung Chan;Cha, Ji Hyun;Shin, Jiuk;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.

Optimal Design of an Auto-Leg System for Washing Machines (세탁기용 자동신통저감장치($Auto-Leg^{TM}$)의 최적 설계)

  • Seo, H.S.;Lee, T.H.;Jeon, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.996-1001
    • /
    • 2006
  • Automatic washing machines have been improved and popularized steadily since the first electric washing machine was produced in the early 1900's. Appliance industry has tried to obtain the performance of washing machine with large capacity, high energy efficiency, low vibration and low noise levels. As the installation peace of a washer becomes closer to the living space, vibration and noise problems become more important challenges. In general, a washing machine has four legs to support its body. Four legs of the washing machine should be attached on a floor. If not so, it may cause severe vibration or walking in the spin-drying process. Unfortunately, the floor of an ordinary house is bumpy in general, and the consumers will not accept bolting washing machines to a foundation; moreover, sometimes they move the location of their washing machines to utility rooms or bath rooms or kitchens and don't care for leveling the legs exactly. In this study, we devise an auto-leg system that prevents the occurrence of abnormal vibration and walking of washing machines. It is simply composed of a spring and a friction damper. Some experiments are implemented to show the dynamic characteristics of the three-dimensional auto-legged washing machine model that is located on the even or uneven ground. A spring parameter is optimized to adjust the length of the auto-leg system automatically up to 10 mm irregularity, and the friction damper is designed to decrease a resonance induced by the spring of the auto-leg system. Some numerical results show that placing the proposed auto-leg system in a washing machine makes good performance with low vibration, as well as low noise, regardless of the unevenness of the floor.

  • PDF

Torsional Vibration of a Hollow Shaft Subjected to a Moving Mass (이동질량에 의한 중공축의 비틀림 진동해석)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.975-979
    • /
    • 2005
  • The analysis of a mechanical system, body traveling along the elastic structure, has been a topic of interest. The establishment of analytical method for the development and control of this system is required in the fields of many machine operations such as modern weapons and high-speed feed drive system for a machine tool. The dynamic equations are derived on the torsion of a cantilever hollow shaft induced by the spin-up of a moving mass and the displacement of the mass. Influences of design parameters such as the inertia ratio, the mass moving speed and the friction coefficient are discussed on the transient response of the system.

Analysis of Frequency Characteristics of Writing Instruments Due to Friction (필기구 마찰의 주파수 특성 분석)

  • Shin, JaeUn;Park, JinHwak;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.148-152
    • /
    • 2017
  • The feel of writing is important to customers when they buy smart devices with stylus such as smartphones and tablet computers. With an aim to reproduce the tactile sensibility of writing instruments when people write on the glass display using a stylus, this study focuses on the frequency characteristics of writing instruments that can describe the vibrations of writing instruments sliding over counter surfaces. In addition, this study includes the effect of various factors influencing the friction of writing instruments such as lubricant, nib material, and contact type. We perform sliding experiments with six types of writing instruments and a sheet of paper to understand the relation between the friction conditions of the nib and the frequency characteristics. As this research focuses on the tactile perception of human skin when people use a writing instrument, the analysis of frequency characteristics is performed in the perceptible frequency range of mechanoreceptors in the human skin. As a result, three types of frequency characteristics are identified. Low frequency peaks are observed for a metal nib with ink; high frequency peaks are observed for a nib without ink; and, middle frequency peaks with a wide range of distribution occurs for fabric nibs with ink. Therefore, to implement the proper feel of writing, at least three types of vibrations have to be made.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.