• 제목/요약/키워드: Friction weld

검색결과 212건 처리시간 0.026초

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석 (Analysis of friction stir welding characteristics of aluminum alloy using machining center)

  • 승영춘;박경도;이춘규
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.

해양차량 쇽업소버용 강재의 이종 마찰용접과 AE평가 (Dissimilar Friction Welding for Marine Shock Absorber Steels and its Evaluation by Acoustic Emission)

  • 이배섭;공유식;김선진
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.44-48
    • /
    • 2005
  • The shock absorbers for marine vehicles are very important components to absorbing the shock resulting from driving. Depending on the kinds of vehicles, these essential components, piston and piston rod, must be made of S25C, S45C, and SCM440, must be precisely machined, and assembled by the bolts. Other materials used have been difficult to weld, and could be unstable in quality, by the conventional arc welding. Also, they have been associated with a lot of technical problems in manufacturing. However, using the friction welding technique, such problems will be avoided. These factors have necessitated the domestic development of the marine shock absorber using a friction welding, as well as stimulating a new approach to the study of real-time weld quality evaluation by AE techniques.

Al-Mg-Si계 알루미늄 합금 판재 마찰교반접합부의 결정 방위 분포에 대한 용접후열처리의 영향 (Effect of Post Weld Heat Treatment for Crystal Orientation Distribution on Friction Stir Welds of Al-Mg-Si Series Aluminum Alloy Sheets)

  • 이광진
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.62-67
    • /
    • 2009
  • Friction stir welding (FSW) was carried out for Al-Mg-Si series aluminum alloys which are being used for automotive body structure. Consequently, Post weld heat treatment (PWHT) was applied to the friction stir welds to evaluate the effect of the paint baking process which is one of the automotive fabrication process on friction stir welded zone (FSWZ) in 443K for 1.2Ks. Grain structure and its crystal orientation distribution was measured about both the as welded specimens and the post weld heat treated specimens. An optical microscope (OM) and an field emission scanning electron microscope (FE-SEM) was used for observing the grain structure and measuring its crystal orientation distribution, respectively. Changes on the grain structure and its crystal orientation distribution were not detected. From the present results, it was confirmed that the paint baking process after FSW do not affect on the grain structure and its crystal orientation distribution of FSWZ. The comprehensive investigations will be performed for various automotive aluminum alloys manufactured by different processes, in the future.

차량 밸브용 내열강재 이종 마찰용접부의 피로특성 평가 (An Evaluation of Fatigue Properties on Dissimilar Friction Weld of Heat-Resisting Steels Used in Vehicle Valves)

  • 이동길;이상열;정재강
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.186-192
    • /
    • 2002
  • The fatigue crack propagation characteristics were investigated on dissimilar friction weld of two kind of heat-resisting steels (STR3 and STR35) commonly used in valve materials for vehicles. A small circular artificial defect was machined to induce fatigue crack at bonded line, heat affected zone and base metal of the weld on the surface of the specimens. From the results of the experiment, the fatigue limits of the materials STR3 and STR35 were obtained to be 429.0MPa and 409.4MPa respectably. The STR35 base metal and 1.0mm HAZ specimens showed 190% and 82% higher fatigue life than STR3 base metal. And the fatigue life of 1.0mm HAZ specimen was shown 99% on STR3 and 29% on STR35 higher than that of their base metal. But the fatigue life of weld interface specimen was shown 18% on STR3 and 72% on STR35 lower than that of their base metal because of the weld interface separation.

SM45C와 SCM4의 마찰용접 및 피로특성에 관한 연구 (A Study on Friction Welding of SM45C to SCM4 Steel Bars and the Fatigue Properties)

  • 오세규;김부안;김선진;남상훈
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.112-121
    • /
    • 1988
  • A study on friction welding of carbon steel bar (SM45C) to chrome molybedenum steel bar(SCM4) is examined experimentally through tensile test, hardness test, microstructure test and fatigue test. so, this paper deals with optimizing the welding concitions and analyzing various mechanical properties about friction welds of SM45C to SCM4 steel bars. The results obtained are summarized as follows; 1) For friction welded joints of SM45C to SCM4 steel bars, the total upset(U)increases linearly with an increase of heating time ($t_{1}$) till 6s. 2) The determined optimum welding conditions are heating time ($t_{1}$)2s, upsetting time($t_{2}$), 3s, heating pressure($p_{1}$), 4kgf/$mm^{2}$(39.2MPa), upsetting pressure($p_{2}$, 8kgf/mm$^{2}$(78.4MPa) and rotating speed(N), 2, 000rpm when the total upset(U) is 3.4mm, resulting in a computed relationship between the joint tensile strength .sigma.$_{t}$ (kgf/mm$^{2}$and the total upset U(mm); .sigma.$_{t}$ =$0.21U^{3}$ - $3.38U^{2}$ +17.03U + 66.00 3) As the elongation is increased more and more, the fracture position becomes away from weld interface and the fractures are similar to those of SM45C. Fracture is taken place on SM45C side. 4) The weld interface of two dissimilar materials is mixed strongly, and the heat affected zone is about 2.0mm at SM45C while about 2.7 mm at SCM4 side. Therefore, the welded zone and heat affected zone are very narrow, comparing with those of the joints welded by the other welding methods. 5) The fatigue strengths at N=10$^{6}$ cycles of SM45C, SCM4 and friction welded joints are 23kgf/$mm^{2}$, 33kgf/$mm^{2}$(220.5 MPa), and 22.5kgf/$mm^{2}$(220.5MPa) respectively, and fracture at friction welded joint takes place at the side of SM45C. 6) The hardness of the friction weld interface is 3 times higher than that of base metal. 7) Fatigue strength of friction welded joint is higher than that of base metal. 8) Notch sensitivity factor of friction welded joint is lower than that of base metal.

  • PDF

마찰용접에 의한 초경공구재와 금속간의 압접기술개발과 AE에 의한 품질평가 (Friction Welding of Sintered Hard Tool Materials to Metals and Its Quality Evaluation by AE)

  • 오세규;전태언;박일동;오명석;이주석
    • 한국해양공학회지
    • /
    • 제10권1호
    • /
    • pp.36-46
    • /
    • 1996
  • This paper deals with determinig the proper friction welding condition and analyzing various mechanical properties of friction welded joints of sintered carbide tool materials(K20, P25, and SKDX5 for the blade part of drill or press punch) to alloy steel (SKH4, SCM440 for the shank part of drill or press punch), the alloy steel to aluminum(A6061 for the interlayer material between the blade part and the shank) and sintered carbide tool materials to alumminum. And also acoustic emission test will be carried out during fiction welding to evaluate the weld quality.

  • PDF

유공압 밸브스풀용 강재의 봉대봉 동종재 마찰용접과 AE 평가 (Bar-to-bar similar friction welding of hydraulic or pneumatic value spools and AE evaluation)

  • 오세규;장지훈;전태언;박형동;유인종
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1995년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.118-122
    • /
    • 1995
  • The hydraulic or pneumatic valve spools become essential as the important components on the production of automatic hydraulic or pneumatic machinaries as mechanical industry is developed rapidly. The machining precision is asked for manufacturing the valve spools. They could be unstable in the quality by the conventional arc welding and they have a lot of technical problems in manufacturing because their shapes are generally small. By the Precision casting process such as lost wax process, the production cost will be increased. But by the friction welding technique, they will be able to be made without such problems. Furthermore, there is a few study on friction welding of such hydraulic valve spool steels and in-process real-time weld quality evaluation technique by acoustic emission. So that, the final purpose of this study is 1) the development of design and manufacturing technique of hydraulic or pneumatic valve spool by optimizing of friction welding, and 2) the development of in-process real-time weld quality evaluation technique by acoustic emission.

  • PDF

경량화 피스톤 로드에 사용되는 SM45C/SM45C-Pipe의 마찰용접시 업셋압력이 미치는 영향 (Effect of Upset pressure on weldability in the Friction Welding of SM45C-Solid and SM45C-Pipe which is used in the Piston-Rod)

  • 민병훈;최원용;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.36-43
    • /
    • 2008
  • This research is tendencious to manufacture solid piston-rod of shock absorber as hollow piston-rod using friction welding. The SM45C has been welded to the SM45C-pipe in order to investigate the effect of upset pressure on friction weldability. The friction time and upset pressure was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. When the upset pressure is sufficient, gets the high tensile strength. The optimal welding conditions were n=2,000rpm, $P_1$=55MPa, $P_2$=95MPa, $t_1$=1.5sec, $t_2$=2.0sec when the total upset length is 4.5mm.