• Title/Summary/Keyword: Friction stir welding (FSW)

Search Result 131, Processing Time 0.03 seconds

Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry (마찰교반용접 툴 변화에 따른 마그네슘 합금 압출 판재 마찰교반용접부 기계적 물성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.280-288
    • /
    • 2016
  • This study proposes improved welding tools for magnesium alloys. Two types of tools were used for friction stir welding (FSW). The effect of the welding tools on the FSW joints was investigated with a fixed welding speed of 200mm/min and various rotation speeds of 400 to 800 rpm. After FSW, the joints were cross-sectioned perpendicular to the welding direction to investigate the defects. A tensile test and Vickers hardness test were conducted to identity the mechanical properties of the joints. Defects were observed when the rotation speed was 400 rpm, regardless of the welding tool, and the amount of defects tended to decrease with increases in rotational speed. Defect-free welds were obtained when the rotation speed was 800 rpm. The best weld quality was acquired using the C type welding tool. The rotation speed of 800 rpm and welding speed of 200 mm/min produced the best joining properties. The ultimate tensile strength, yield strength, and elongation of the welded region were 90.0%, 69.1%, and 83.2% those of the base metal, respectively.

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.258-261
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.304-308
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

Evaluation on Temperature of FSW Zone of Magnesium Alloy using Experiment and FE Analysis (시험 및 유한요소법을 이용한 마그네슘 합금 마찰교반용접부 온도 특성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.434-441
    • /
    • 2016
  • Friction Stir Welding (FSW) is a solid-state joining process involving the frictional heat between the materials and tools. The amount of heat conducted into the workpiece determines the quality of the welded zone. Excessive heat input is the cause of oxides and porosity defects, and insufficient heat input can cause problems, such as tunnel defects. Therefore, analyzing the temperature history and distribution at the center of the Friction Stir Welded zone is very important. In this study, the temperature distribution of the friction stir welding region of an AZ61 magnesium alloy was investigated. To achieve this goal, the temperature and metal flow was predicted using the finite element method. In FE analysis, the welding tool was simplified and the friction condition was optimized. Moreover, the temperature measuring test at the center of the welding region was performed to verify the FE results. In this study, the tool rotation speed was a more dominant factor than the welding speed. In addition, the predicted temperature at the center of the welding region showed good agreement with the measurement results within the error range of 5.4% - 7.7%.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

The joints properties of Friction Stir Welded Al 7075 alloy (7075 알루미늄 합금의 마찰교반용접특성)

  • 이창용;김선규;이원배;장웅성;연윤모;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.159-161
    • /
    • 2004
  • FSW공전은 특수하게 설계된 용접툴(tool)을 특정한 회전수로 회전시키면서 용접하고자하는 재료의 용접라인에 삽입하여 용접에 필요한 마찰열과 소성변형을 발생시키고, 그 후 용접라인을 따라 툴을 이동시킴으로써 용접이 이루어지는 매우 간단한 공정이다. (중략)

  • PDF

THE JOINT CHARACTERISTICS OF FRICTION STIR WELDED AZ91D MAGNESIUM ALLOYS

  • Kim, Jong-Woong;Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.516-521
    • /
    • 2002
  • A study was carried out to grow an understanding of the microstructural development of friction stir welds on an AZ91D magnesium alloy, and to evaluate the mechanical properties of the welds. AZ91D plates with the thickness of 4mm were used, and the microstructural development of the weld zone was investigated using optical and scanning electron microscopes. Square butt welding joint with good quality was obtained at the conditions of under 187mm/min of travel speed with 1100 to 1250 rpm of tool rotation speed. The microstructure within the weld region consisted of fine equiaxed grains with no evidence of the original dendritic structure. The hardness tests showed slightly increased harness in the weld region, and the minimum hardness measured is in that of the parent material. Tensile strength of the weld zone was remarkably improved due to very fine recrystallized structure. XRD pattern of weld zone revealed the removal of $\beta$ intermetallic compounds, $Mg_{17}$Al$_{12}$, which had been distributed in the base metal.l.

  • PDF

Mechanical Characteristics and Microstructure on Friction Stir Welded Joints with 6061-T6 Aluminium Alloy (알루미늄합금 6061-T6의 마찰교반용접 조건에 따른 기계적특성 및 용접부 조직평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.693-699
    • /
    • 2009
  • This paper shows mechanical properties and behaviors of macro- and micro-structures on friction stir welded specimen with 6061-T6 aluminum alloy plate. It apparently results in defect-free weld zone jointed at welding conditions like the traverse speed of 267mm/min, tool rotation speed of 2500rpm, pin inserted depth of 4.5mm and tilting angle of $2^{\circ}$ with tool dimensions such as tool pin diameter of 5mm, shoulder diameter of 15mm and pin length of 4.5mm. The tensile stress ${\sigma}_T=228MPa$ and the yield point ${\sigma}Y=141MPa$ are obtained at the condition of traverse speed of 267mm/min and tool rotation speed of 2500rpm. With the constant rotation speed, the higher traverse speed become, the higher tensile stress and yielding point become. Vickers hardness for welding zone profile were also presented.