• Title/Summary/Keyword: Friction pad

Search Result 235, Processing Time 0.022 seconds

A Study on the Establishment of Disc Braking Force Pattern to reduce the Wear Mass of Pad (패드 마모량 감소를 위한 디스크 제동력 패턴 설정에 관한 연구)

  • Kim, Seog-Won;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. Also the braking system should be designed considering the economical management, such as effective use of generated braking energy and the minimum wear of friction materials(a pad and a brake shoe). In this paper, we establish the disc braking force pattern that reduces the wear of pad in the disc braking system by minimizing the variance of the instantaneous disk baking energy during braking time, and compare the wear mass of pad between the conventional disc braking force pattern and the established results.

  • PDF

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

A Study on Friction Characteristics for Motorcycle Disk Using Taguchi Experimental Design (다꾸지 기법에 의한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구)

  • Juen, H.Y.;Ryu, M.R.;Lee, S.J.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • The effect of manufacturing parameters on wear and improve cooling of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the wear and improve cooling factor such as applied load, sliding speed, frictional time and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factor. In this study, the wear and cooling characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle disk break system employing Taguchi robust experimental design. From this study, the result was shown that vents have an effect on convection area improving more cooling ability and reduced wear of the disk.

  • PDF

Optimum Design of the Screw extruder using Thermo-mechanical Analysis

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.28-33
    • /
    • 2001
  • Screw conveyors are used extensively in industrial for conveying and elevating materials. Despite their apparent simplicity, the mechanics of the conveying action is very complex. so many engineers depend on experiential data. Capacities of screw are pumping, steady flow of polymer melts, steady volumetric throughput etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. by computation volumetric efficiency increases as rotating velocity increases and decreases as friction coefficient increases. also it decreases with short pitch length. and double flight screw is more effective than single flight screw. The temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on volumetric throughput efficiency of the screw and thermo-mechanical characteristics of screw.

  • PDF

Tribological Analysis on the Contact Behaviors of Disk Brakes Due to Frictional Heatings -Cooling Effects By Vent Holes- (디스크 브레이크의 마찰열 접촉거동에 관한 트라이볼로지적 연구 - 벤트홀의 방열효과를 중심으로 -)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the thermal distortion of the ventilated disk brakes has been investigated based on the air cooling effects during 15 braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

Analaysis of the Characteristics of the Low Friction Pad Type Pistion (패드식 피스톤의 특성 해석에 관한 연구)

  • 김희봉;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.97-107
    • /
    • 1993
  • 프시톤 형상에 관한 연구는 엔진의 열효율을 상승시키는데 중점을 두었으나 캘리포니아주의 환경 관련 법안을 계기로 공해 물질의 배출을 중이는 방향으로 연구가 이루어지고 있다. 즉, 실린더내의 최고 온도와 압력을 적정한 수준에서 조절하여 공해물질의 방출을 극소화시키면서 열효율을 높힐 수 있는 방안에 대한 연구를 많이 진행하고 있다. 본 논문은 유한요소법을 이용하여 저마찰 패드식 피스톤에 대한 트라이볼로지적 해석으로 피스톤의 편심에 따른 압력 분포도 해석, 마찰력과 피스톤의 동특성에 대하여 알아보고자 한다. 이들을 해석하기 위한 가장 중요한 역학적 상태량은 피스톤 표면의 압력 분포와 피스톤의 편심량이며 특히, 압력 분포 해석은 피스톤의 유막 설계시 기본이 된다.

  • PDF

Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy (제동에너지 관점에서의 최적 디스크 제동력 패턴 설정)

  • Kim, Young-Guk;Park, Chan-Kyoung;Kim, Ki-Hwan;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

The DOE Based Robust Design to Reduce the Brake Squeal Noise (실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계)

  • Kwon, Seong-Jin;Kim, Mun-Sung;Lee, Bong-Hyun;Lee, Dong-Won;Bae, Chul-Yong;Kim, Chan-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.

Measurement of Mass Transfer from Metal Friction Surfaces using Laser Plasma Spectroscopy (레이저 플라즈마 분광 기법을 이용한 금속 마찰 표면에서 물질전달 측정)

  • Yoon, Sangwoo;Kim, Jihoon;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.46-52
    • /
    • 2017
  • We quantitatively measured the mass transfer from friction surfaces, specifically brake pads and rotors, using laser plasma spectroscopy. Specifically, we modelled the mass transfer from the pad to the rotor and measured the elemental diffusion intensity distribution in the rotor material using laser plasma spectroscopy. The main elements measured were Cu, Ni, Ti, and Cr, and the distribution of these after transfer was measured as the ratio of the atomic peak and the ion peak of the plasma in the rotor exposed to friction and the surface composition of the rotor and the roughness, respectively. We measured and quantified the diffusion coefficient for each element through the mass transfer model and found that Cr obtained the largest diffusion coefficient (D) of the elements measured based on this system with a value of $1.9484{\times}10^{-15}m^2/s$.