• 제목/요약/키워드: Friction Temperature

검색결과 1,074건 처리시간 0.026초

A Study on the Friction and Wear Properties of Tribaloy 800 Coating by HVOF Thermal Spraying

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Song, Ki-Oh;Back, Nam-Ki;Chun, Hui-Gon;Hwang, Soon-Young
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.240-244
    • /
    • 2006
  • Tribaloy 800 (T800) powder is coated on the Inconel 718 substrate by the optimal High Velocity Oxy-Fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of the possibility of replacing of the widely used classical chrome plating, friction, wear properties and sliding wear mechanism of coatings are investigated using reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C). Both at room temperature and at $538^{\circ}C$, friction coefficients and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as $CoO,\;Co_3O_4,\;MoO_2,\;MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through complicated mixed wear mechanisms. The sliding surfaces are worn by the mixed mechanisms such as oxidative wear, abrasion, slurry erosion. The brittle oxide particles and melts and partial-melts play roles as solid and liquid lubricant reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the surfaces vulnerable to frictional heat and wear.

다구찌 로버스트 실험계획법에 의한 자동차용 마찰재의 성형조건과 마찰특성과의 상관관계에 환한 연구 (The Correlation between Manufacturing Parameters and friction Characteristics of Automotive Friction Materials by Taguchi Robust Experimental Design)

  • 김광석;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.225-232
    • /
    • 1999
  • The effect of manufacturing parameters such as molding and curing conditions on friction characteristics of friction materials was studied using a pad-on-disk type friction tester. Friction materials containing 15 ingredients were investigated for an optimal manufacturing condition for the best friction characteristics employing Taguchi robust experimental design. The main effects were different for mechanical properties and friction characteristics and were strongly influenced by manufacturing conditions. An optimum manufacturing condition was obtained to achieve the best friction characteristics concerning mechanical properties(hardness, porosity, wear resistance), friction stability, and change of rotor temperature.

  • PDF

환원분철을 이용한 마찰식 완충기 개발 (Friction Snubber Development Using Sponge Iron)

  • 김병삼
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.1021-1028
    • /
    • 2004
  • Developed friction snubbers changes the shock or vibration into a heat energy by mechanical friction. Snubber is divided into friction snubbers and hydraulic snubbers according to the operation types. However, hydraulic snubber has a lot of problems caused by temperature, humidity, radioactivity, and viscosity of hydraulic fluid. In these respects, to solve these problems, not only do friction snubber supplement lacks of hydraulic snubber but has also simpler structure than hydraulic snubber. In this paper, friction snubber used sponge iron by friction material is experimentally compared with general friction snubber In this results, the experiment verifies friction function and produce the manufacture condition for the effective friction snubber development.

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (An Experimental Study on the Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.215-225
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several combinations of metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), $titaniumisopropoxide(Ti(Opr^{j})_{4})$, $zirconiumisopropoxide(Zr(Opr^{j})_{4})$ and $aluminumbutoxide(Al(Obu^{t})_{4})$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively, in this work. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribe-tester where a reciprocating steel ball slid on a test material, and the tribological property was also evaluated with respect to both heat-curing temperature and tile time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher heat-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that it was caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C$.

  • PDF

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials Synthesized by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.324-332
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide$(Ti(Opr^i)_4),$ zirconiumisopropoxide $(Zr(Opr^i)_4)$ and aluminumbutoxide$(Al(Obu^t)_4)$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribo-tester, and evaluated with respect to both heat-curing temperature and the time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher het-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that these results were caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C.$

PTFE-폴리이미드 복합 재료의 마찰과 마모 특성 (Friction and Wear Characteristics of PTFE-Polyimide Composite)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • 제11권4호
    • /
    • pp.28-34
    • /
    • 1995
  • PTFE has good mechanical and chemical stability at wide temperature range, and more over, shows a low value of friction coefficient. On the other hand, it shows cold flow and high wear rate. However, these short comings can be overcome by adding various fillers. In this experiment, PTFE and polyimide powder were mixed into composite and its tribological characteristics was investigated. 100% polyimide was also tested for comparison. The countefface material was a stainless steel (SUS304). Friction and wear tester of ring-on-block type was used at room temperature and under atmosphere. After the wear test, the worn surfaces were examined by optical microscope. The test results show that PTFE-polyimide composite generates. the wear transfer film on both sides of the friction surfaces, and, the friction coefficient and the wear rates are relatively low. 100% polyimide generated little wear transfer films, showed high friction and wear rates, and also showed some problems of vibration and noise. It even damaged the stainless steel countefface. It was concluded that 100% polyimide does not generate transfer film well because its shear resistanbe is high and it stickslips, thus, friction coefficients and wear rates are high. In case of PTFE-polyimide composite, on the other hand, transfer film containing sufficient PTFE adheres and remains on both wear surfaces well enough because PTFE has low shear resistance. Polyimide particles in the composite were proved to be able to bear normal load and does not show stick-slip because they are covered with transfer film containing much PTFE.

Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구 (A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • 제7권1호
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.

CMP 공정중 패드 표면의 온도분포에 관한 연구 (The Distribution of Temperature on Pad Surface During CMP Process)

  • 정영석;김형재;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1283-1288
    • /
    • 2003
  • The friction heat generated by the CMP process hasinfluence on removal rate and WIWNU(Within Wafer Non-Uniformity). Therefore, the object of this study is to find the distribution of temperature on pad surface during CMP process. To do this, the authors analyse the kinematics of CMP equipment to verify the sources of friction heat and compare the analysis result with the experimental results. Through the analysis and experiment conducted in this paper, we can predict the distribution of polishing temperature across the pad surface. Furthermore the result could help to predict the process conditions which could enhance the polishing results, such as WIWNU and removal rate of thin film to achieve more efficient process.

  • PDF

열압재목재(熱壓縡木材)의 동적점탄성(動的粘彈性) (Dynamic Viscoelasticity of Hot Pressed Wood)

  • 홍병화
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권4호
    • /
    • pp.3-10
    • /
    • 1984
  • In hot pressed wood of Pseudotsuga menziesii compressed to 0 - 50 percent at temperature 60 - $180^{\circ}C$, relative humidity conditions affecting dynamic Young's modulus of elasticity and internal friction were investigated. The results obtained are summarized as follows: Moisture absorption of the hot pressed wood decreased with increasing press temperature, but there was no effect on the amount of compression. Thickness swelling dereased with increasing press temperature, and increased with increasing amount of compression. In general, dynamic Young's modulus of elasticity showed a straight line with increasing specific gravity of specimens. Dynamic Young's modulus of elasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content. Dynamic Young's modulus of R specimens pressed in the radial direction showed hight values than T specimens pressed in the tangential direction.

  • PDF

금형 표면 처리가 AZ31B 마그네슘 합금의 온간 마찰 특성에 미치는 영향에 관한 연구 (Influence of Tool Coating on Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature)

  • 한수식
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2021
  • The success of warm forming of Mg alloy sheet is greatly influenced by friction at elevated temperature, depending on the surface treatment of the tool. The tool coating affected the frictional characteristics of AZ31B Mg alloy sheet at elevated and room temperatures. The frictional behavior of the Mg alloy sheet at room temperature was not significantly affected by surface treatment conditions of the tool, but was significantly affected at elevated temperature. When the contact pressure is high, a few surface-treated tools exhibit a higher coefficient of friction than those without surface treatment. It is important to select the surface treatment conditions of the tool in order to ensure appropriate friction during warm forming of Mg alloy sheet.