• 제목/요약/키워드: Friction Pendulum System

검색결과 79건 처리시간 0.023초

다목적 유전자 알고리즘을 이용한 퍼지제어기의 설계 (Design of Fuzzy Controller using Multi-objective Genetic Algorithm)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2005
  • The controller that can control the smart base isolation system consisting of M damper and friction pendulum systems(FPS) is developed in this study. A fuzzy logic controller (FLC) is used to modulate the M damper force because the FLC has an inherent robustness and ability to handle non-linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. When earthquake excitations are applied to the structures equipped with smart base isolation system, the relative displacement at the isolation level as well as the acceleration of the structure should be regulated under appropriate level. Thus, NSGA-II(Non-dominated Sorting Genetic Algorithm) is employed in this study as a multi-objective genetic algorithm to meet more than two control objectives, simultaneously. NSGA-II is used to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can efficiently find Pareto optimal sets that can reduce both structural acceleration and base drift from numerical studies.

  • PDF

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

스마트 최상층 면진시스템의 진동제어 성능평가 (Performance Evaluation of Vibration Control of a Smart Top-Story Isolation System)

  • 강주원;김태호;김현수
    • 한국공간구조학회논문집
    • /
    • 제10권3호
    • /
    • pp.49-56
    • /
    • 2010
  • 본 연구에서는 스마트 최상층 면진시스템을 적용한 고층건물의 풍응답 제어성능을 검토해보았다. 이를 위하여 77층 초고층 건물을 예제구조물로 선택하였고 풍동실험을 통해서 얻은 풍하중을 사용하여 수치해석을 수행하였다. 예제구조물의 최상층은 FPS 및 MR 감쇠기로 구성된 스마트 면진시스템을 이용하여 주구조물과 분리된다. 주구조물의 동적응답을 저감시키는 것이 스마트 최상층 면진시스템의 가장 중요한 목표이지만 면진된 최상층의 과도한 응답은 구조물을 불안정하게 만들 수 있다. 따라서, 본 연구에서는 면진된 최상층과 주구조물을 효과적으로 제어하기 위하여 스카이훅제어기를 제어알고리즘으로 사용하였다. 제안된 스마트 최상층 면진시스템의 제어성능을 검토하기 위하여 일반적인 수동 최상층 면진시스템의 제어성능과 비교하였다. 수치해석결과 제안된 스마트 최상층 면진시스템을 이용하면 일반적인 수동 최상층 면진시스템에 비해서 면진층의 변위를 효과적으로 줄이면서도 구조물의 응답을 저감시킬 수 있음을 확인할 수 있었다.

  • PDF

E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답 (A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper)

  • 황인호;주민관;심종성;이종세
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.685-690
    • /
    • 2008
  • 최근 대규모의 지진피해로 인해 내진설계에 대한 관심이 높아지면서, LRB(Lead Rubber Bearing), FPS(Friction Pendulum System) 등 다양한 지진격리장치에 대한 연구가 진행되고 있다. 본 연구에서 E-Shape 강재이력댐퍼를 이용한 지진격리장치의 성능 평가를 위해 E-Shape 댐퍼의 동적거동 실험을 수행하였으며, 이를 바탕으로 해석적 연구를 위한 수치모델을 제안하였다. 또한, 제안된 E-Shape 강재이력댐퍼의 수치모델을 6자유도를 가진 5층 건물에 적용하여 LRB 시스템과 이력거동을 비교하여 지진격리성능 평가를 수행하였다. 본 연구를 통하여 제안된 수치모델은 실제 E-Shape 강재이력댐퍼의 동적거동을 적절히 묘사할 수 있으며, E-Shape 강재이력댐퍼는 비선형 거동을 통한 에너지를 적절히 소산시킴으로서 기존 시스템과 비교하여 충분히 지진격리성능을 발휘할 수 있을 것으로 사료된다.

면진 트러스-아치 구조물의 지진거동 분석 (The Seismic Behavior of the Truss-Arch Structure with Seismic Isolation)

  • 김기철;김광일;강주원
    • 한국공간구조학회논문집
    • /
    • 제8권2호
    • /
    • pp.73-84
    • /
    • 2008
  • 지진에 의한 구조물의 응답을 저감시키기 위하여 내진, 면진, 제진 등 다양한 장치가 사용되고 있으며 그 중에서 면진장치는 구조물로 전달되는 지진에너지를 최소화하기 위한 시스템으로 그 주된 목적은 구조물의 주기를 길게 만들어 지진파의 탁월주기를 벗어나게 하는 것이다. 본 연구에서는 대공간구조물의 기본적인 동적특성을 가지고 있으며 동시에 가장 간단한 구조이기도 한 아치에 납-고무면진장치와 마찰진자면진장치를 적용하여 지진거동을 분석하였다. 대공간구조물의 지진거동은 일반적인 골조구조물의 지진거동과 달리 수평지진에 의하여 수직방향으로 큰 지진응답이 나타나고 있다. 면진장치를 대공간 구조물에 적용할 경우에 수평지진하중에 의하여 수평방향 지진응답이 저감되는 것은 물론 면진장치의 수직강성으로 인하여 수직응답도 현저하게 저감되는 것을 알 수 있었다.

  • PDF

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • 제19권4호
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.