• Title/Summary/Keyword: Friction Disturbance

Search Result 137, Processing Time 0.044 seconds

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

A Study on the Buckling and Plastic Instable Flow in Upset Forging (업셋 단조의 좌굴 및 소성 불안정 유동에 관한 연구)

  • 김완수;이병섭;황두순;홍성인
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.393-398
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process, I. e. upsetting, backward extrusion, piercing, indentation. And also, it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfections in the lubrication, billet eccentricity, inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and for better control of forming operation, we should necessarily find out their phenomena. In this study, we introduced the friction disturbance due to inclined punch angle. Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity. Also, we considered the buckling parameters of billet with the large aspect ratio in upset forging.

  • PDF

Shear Characteristics of Weathered Granite Soils for Degree of Weathering and Saturation (화강토의 풍화도와 포화도에 따른 전단특성)

  • Song, Chang-Seob;Jang, Wong-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • The aim of the work described in this paper is to study the shear characteristics of the weathered granite soil. To this end, a series of consolidated undrained triaxial compression tests are carried out to investigate the shear parameters-cohesion and internal friction angle for the degree of saturation and degree of weathering. From the results, it is found that the shear parameters of weathered granite soil are influenced on the degree of saturation, degree of weathering and disturbance. Especially, internal friction angle is more influenced on the upper factors than cohesion. And shear parameters are more acted on the degree of saturation than the degree of weathering in the test range. It is, therefore, recommended that must be considered the conditions of granite soil-degree of saturation, degree of weathering and disturbance etc-in case of the calculation of bearing capacity, stability analysis and other designs with shear parameters.

  • PDF

A Study on Buckling and plastic Instable Flow with Kinematic Hardening (이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구)

  • 황두순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

Design and Control of MR Military Suspension System Considering Friction Force (마찰력을 고려한 군용 MR 현수 장치의 설계 및 제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.480-485
    • /
    • 2009
  • This paper presents dynamic modeling and control analysis of a military vehicle suspension featuring MR valve structure. Firstly, the dynamic model of the suspension system which is included gas spring, MR valve and gas chamber is established with respect to the disturbance. Secondly, the friction model of the suspension system is derived by considering experiment result of the MR suspension system. And then, response characteristics of the damping force with respect to the magnetic field and friction force with the proposed friction model are provided to show the feasibility of practical application. In addition, control performance of the proposed MR suspension system is evaluated with quarter vehicle.

  • PDF

Design and Control of MR Military Suspension System Considering Friction Force (마찰력을 고려한 군용 MR 현수 장치의 설계 및 제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • This paper presents dynamic modeling and control analysis of a military vehicle suspension featuring MR valve structure. Firstly, the dynamic model of the suspension system which is included gas spring, MR valve and gas chamber is established with respect to the disturbance. Secondly, the friction model of the suspension system is derived by considering experiment result of the MR suspension system. And then, response characteristics of the damping force with respect to the magnetic field and friction force with the proposed friction model are provided to show the feasibility of practical application. In addition, control performance of the proposed MR suspension system is evaluated with quarter vehicle.

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

Anti-Sway Control of the Overhead Crane System using HOSM Observer

  • Kwon, Dongwoo;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1027-1034
    • /
    • 2016
  • This paper proposes a sum of squares (SOS) method for anti-swing control of overhead crane system using HOSM (High-Order Sliding-Mode) observer. By representing the dynamic equations of overhead crane as the polynomial dynamic equations via Taylor series expansion, the control input is obtained from the converted polynomial dynamic equations by numerical tool SOSTOOL. Since the actual crane systems include disturbance such as wind and friction, we propose a method to compensate for the disturbance by estimating the disturbance using HOSM observer. Numerical simulations show the effectiveness and the applicability of the proposed method.

A TERVO SYSTEM WITH RECUNANT ACYUATORS

  • Choi, Gang-Hyeon;Kobayashi, Hisato;Nakamura, Hideo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.219-222
    • /
    • 1995
  • This paper presents a control law of multiple actuation servo systems. Multiple actuation systems have an ability to solve some difficult engineering problems; Coulomb friction, backlash, and disturbance. This fact is shown by basic experiments as well as theoretical analysis. The proposed control strategy remarkably improves the performance comparing with conventional single actuation systems.

  • PDF

Adaptive High Precision Control of Lime-of Sight Stabilization System (시선 안정화 시스템의 고 정밀 적응제어)

  • Jeon, Byeong-Gyun;Jeon, Gi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1155-1161
    • /
    • 2001
  • We propose an adaptive nonlinear control algorithm for high precision tracking and stabilization of LOS(Line-of-Sight). The friction parameters of the LOS gimbal are estimated by off-line evolutionary strategy and the friction is compensated by estimated friction compensator. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Lyapunov stability theory, and its convergence is guaranteed under the limited modeling error or torque disturbance. The performance of the pro-posed algorithm is verified by computer simulation on the LOS gimbal model of a moving vehicle.

  • PDF